

Pettinare la luce per scoprire nuove terre

G. Micela

INAF – Osservatorio Astronomico di Palermo

In the last years an effort (by NASA, ESO, ESA, ...) has been done to to identify the necessary preconditions and technologies to address the exo-planetary science for the next years

1) Detections

2) Characterization of the internal structure3) Characterization of the exoplanetary atmospheres

ESA

APOPIBICA

Derio and O

3

EXOPLANET ROADMAP ADVISORY TEAM (2010) *still valid*

Δ

From Jupiters to Earths

APOFIDICA

40, mg

51 Peg b- the first exoplanet– *Mayor & Queloz, Nature, 1995*

The star: G2, V=5.5, dist=14.7pc

Phase-folded radial-velocity measurements with the Keplerian model (solid line)

0.46Mj, 0.052 AU

- fiberr-fed spectrograph with simultaneous thorium lamp in a parallel fibre calibration - *Mayor* & *Queloz* 1995
- spectrographs with absorption cells (iodine cell) *Marcy et al. 1995*

Both methods gave precision ~15 m s–1. Double-fiber spectrograph was more efficient in terms of photon noise

HD219134:

a planetary system with 3-super-Earth and 1 sub-Saturn

The star: K3, V=5.6, dist=6.5pc

Phase-folded radial-velocity measurements with the Keplerian model (solid line) for each of the 3 inner super-Earths, after removing the contribution of all the other planets in the system (*Motalebi et al. 2015 in press*)

From top to bottom:

	Planet	Semi-axis(AU)	Mass (M _E)
	b	0.038	4.46
	С	0.064	2.67
	d	0.234	8.67
Na	е	2.14	62.

 $V_{star} = (M_{pl}/M_{star}) (G M_{star}/Dist)^{1/2}$

For MK-type stars with planets in the habitable zone

Effetto	Dopp	ler
		1

Planet Mass	Distance AU	Radial velocity
Jupiter	1	28.4 m/s
Jupiter	5	12.7 m/s
Neptune	0.1	4.8 m/s
Neptune	1	1.5 m/s
Super-Earth (5 M⊕)	0.1	1.4 m/s
Super-Earth (5 M⊕)	1	0.45 m/s
Earth	1	9 cm/s

Stellar Mass (M °)	Planet Mass (M +)	Lum. (L0)	Туре	RHAB. (AU)	RV (cm/s)	Period (days)
0.10	1.0	8e-4	M 8	0.028	168	6
0.21	1.0	7.9e-3	M5	0.089	65	21
0.47	1.0	6.3e-2	M 0	0.25	26	67
0.65	1.0	1.6e-1	K5	0.40	18	115
0.78	2.0	4.0e-1	K 0	0.63	25	209

Nazionale SIF - Roma 23/09/2015

 $V_{star} = (M_{pl}/M_{star}) (G M_{star}/Dist)^{1/2}$

For MK-type stars with planets in the habitable zone

Effetto Doppler

Planet Mass	Distance AU	Radial velocity
Jupiter	1	28.4 m/s
Jupiter	5	12.7 m/s
Neptune	0.1	4.8 m/s
Neptune	1	1.5 m/s
Super-Earth (5 M⊕)	0.1	1.4 m/s
Super-Earth (5 M⊕)	1	0.45 m/s
Earth	1	9 cm/s

Stellar Mass (M °)	Planet Mass (M +)	Lum. (L0)	Туре	RHAB. (AU)	RV (cm/s)	Period (days)	w_{1} m/s → v/c ≈Δλ/λ≈3•10 ⁻⁸
0.10	1.0	8e-4	M8	0.028	168	6	
0.21	1.0	7.9e-3	M5	0.089	65	21	
0.47	1.0	6.3e-2	M 0	0.25	26	67 K	$\Lambda/\Delta\Lambda = 10^{\circ} + $ thousands of lin
0.65	1.0	1.6e-1	K5	0.40	18	115	Nazionale SIE - Roma 23/09/2015
0.78	2.0	4.0e-1	K0	0.63	25	209	

HARPS-N@TNG Italy, Swiss, US, UK

- Spectrograph type Fiber fed, cross-dispersed echelle spectrograph
- R = 115'000
- Wavelength range 383 nm 690 nm
- Calibration ThAr
- Vacuum operation 0.001 K temperature stability
- Observational efficiency SNR = 50 per extracted pixel on a Mv=8, Texp = 60 sec

HARPS-N@TNG The most precise planet hunter in the northern emisphere

Some results: Kepler 93 A long period + transiting planet: massed determination

Best-fit and HIRES (light blue) and HARPS-N (dark blue) RVs .
Long period + short period planets (Dressing et al. 2015)

Kepler-93 G bright star Planetary parameters

Rp(R _⊕)	1.478 ± 0.019
Mp(M _⊕)	4.02 ± 0.68
ρ(g cm ⁻³)	6.88 ± 1.18
a (AU)	0.053 ± 0.002
Teq (K)	1037 ± 134

Some results: Kepler 93b a rocky hot superEarth

Dressing et al. 2015

AROPIDICA

YO conth

G. Micela - INAF OAPalermo - Congresso Nazionale SIF - Roma 23/09/2015

Rossiter effect

(mis)alignement spin-orbit

Selective occultation of approaching and receeding parts of the rotating stellar disk by the planet during transit

Top: HD 189733A b

a symmetric RM effect, signature of an aligned and prograde star-planet system. Triaud et al. 2009

Bottom: WASP-8A

a clearly asymmetric RM effect caused by a planet on a retrograde and strongly misaligned orbit with respect to the stellar rotation axis. Queloz et al. 2010

Planetary mass sensitivity

Limiting factors

Two main factors – two different solutions

- Stability → More accurate wavelength calibration
- Photons → Larger telescopes

Stability

- A single line of the Th-Ar calibration lamps, normally used, has an intrinsic precision of tens of m/s.
- with ~10,000 lines we may achieve 1 m/s

A Laser comb (astrocombs) improves

- the precision of the position of single lines
- the number of lines
- the omogeneity of lines in the spectral orders
- → precision of few cm/s important for bright stars

Astrocomb for HARPS-N@TNG

in collaboration with Center for Astrophysics (CFA), funded by NSF (USA) and WOW (progetto premiale MIUR)

- Frequency laser (LFC) to produce a "comb" full of lines, with delta function shape, evenly distributed in frequency, with a standard atomic frequency as reference
- A highly non-linear photon crystal fibre to shift the radiation from NIR to the band of interest
- A Fabry-Perot cavity to make compatible the Laser comb and the spectrograph resolutions

Solar spectrum reflected by Vesta Below: an order compared with the lines of the Astrocomb and of Lamp

G. Micela - INAF OAPalermo - Congr

Automation

in order to use the Astrocomb as a routine calibrator

Extension of the wavelength band

From the today ~100 nm, to the entire HARPS-N spectrum: 383 to 693 nm

Increase photons ESPRESSO@VLT: an ESO project

- A fiber-fed, cross-dispersed, high resolution echelle spectrograph (R=120,000) – INAF contribution
- @VLT First light on telescope 2016
- Few cm/sec → rocky planets around solar type stars

ESPRESSO@VLT

Red line: 10 cm/s curve for planets orbiting a 0.8 M_☉ star (ESPRESSO limit)
Green line: 1m/s curve for planets orbiting a 1 M_☉ star
Blue and pink areas: habitable zones of stars of 0.8-1.2 M_☉, and 0.2-0.3M_☉, respectively.
Pepe et al. 2014

Not only detections!

Exo-planetary atmospheres understanding the effective temperature, composition, and presence of possible biosignatures in the atmospheres of exoplanets.

- Mass and density do not determine the atmosphere properties
- Atmospheres evolve

Transit & eclipse spectroscopy

Aiming at ~10⁻⁴ stellar flux at multiple wavelengths through stable instrument, external calibration & postprocessing analysis

G. Micela - Chianti 15-17 Sept 2015

• Day side spectra - eclipse

- Reflected radiaton ~ Visible -NIR
- Thermal emission IR

T < 1200K – Reflected emission > Thermal emission

- 1. Albedo
- 2. T-p profile
- 3. Chemistry

Night side spectra – primary transit

- Transmitted spectrum IR
 - 1. ~Upper atmosphere
 - 2. Chemical composition
 - 3. ~Temperature

G. Micela - Chianti 15-17 Sept 2015

Exo-atmospheres with current telescopes

APOFIDICA

V0,29%

Diversity is the rule:

difficult to derive univocally physical parameters

- Planetary spectra are still too poor low signal low resolution
- Signal dominated by the star
- Instrument systematics
- Problems with our atmosphere
- Space no atmosphere, no night-days, entire IR band observable → low spectral resolution, large simultaneous band
- Ground high stability, large mirrors → high spectral resolution

Challenges for ground-based observation of planetary atmospheres

- Measure <10⁻³⁻⁴ variations in flux as function of λ over 1-5 hour time scales
- Earth Atmosphere:
 - Variations in turbulence / seeing
 - Variations in absorption & scattering
 - Variations in thermal sky emission
- Instrumental:
 - Variations in gravity vector or field rotation
 - Variations in thermal behaviour

Strategy for Ground-based Observations

- High-Dispersion Spectroscopy (λ/∆λ≥100,000)
 - Molecular Bands are resolved in tens of individual lines
 - Strong Doppler effects due to orbital motion of the planet (up to >150 km/sec)
 - Moving planet lines can be distinguished from stationary telluric & stellar lines

Some pilot experiments: CRIRES@VLT

• CO in transmission in HD209458b (CRIRES@VLT) (Snellen et al. Nature 2010)

Reveals planet orbital velocity
Solves for masses of both planet and star (model independent)
Evidence for blueshift - high altitude winds? - marginal 2σ suggestion

CO in dayside spectrum of tau Bootis b (CRIRES@VLT)

AOFIBICA

VO/2744

(Brogi et al. Nature 2012 – see also Rodler et al. 2012)

-2.00 -1.10 -0.20 +0.7 +1.60 +2.50 +3.40 +4.30

CRIRES@VLT Upgrade! 6x larger wavelength coverage CO, H₂O, CH₄, NH₃, H₃+,....

-3.6σ -2.4σ -1.2σ

0

+1.2g +2.4g +3.6g +4.8g

VLT ESPRESSO (Optical ! TiO, VO, FeH...)

+2σ

-20

+4σ

spectroscopy (PI: A. Marconi)

HIRES@E-ELT : High resolution

ELT: 39 m Large Area!

- Orbital inclinations and masses of >100 non-transiting planets
- Detection of the individual lines (instead of cross-correlation)
- T/P profile; unambigous detections of inversion layers
- Line broadening ! planet rotation and circulation

HIRES@E-ELT : High resolution spectroscopy (PI: A. Marconi)

- Molecular spectra (CO,CO₂,H₂O,CH₄) as function of orbital phase → photochemistry, T/P vs. longitude
- Evolution of planetary atmospheres

12**C**16**O**

HIRES@E-ELT : High resolution spectroscopy (PI: A. Marconi)

- The most ambitious ELT Science Case:
- Characterizing twin-Earths
 - O_2 in transmission is possible!

Extremely Large Telescopes

APOP1BICA

16-40124th

Snellen et al. 2013G. Micela - INAF OAPalermo - Congresso Nazionale SIF - Roma 23/09/2015

The expected outcome from atmospheric studies

- We have already identified key molecules in few planets (water vapour, methane, CO, CO₂)
- Today we have already a significant numbers of targets suitable for atmospheric observations
- Detailed physical analysis of exoplanetary atmosphere will be possible
- Detection of oxygen in Earth twin in the HZ zone around mid-M star will be possible
- Significant synergy between space low resolution spectra and ground high resolution spectra

A very promísíng future for hígh resolution exoplanetary spectroscopy

Th Dreamy World