

# Spectral analysis of singular, inhomogeneous, collisionless plasma structures

# L. Nocera<sup>1</sup>

<sup>1</sup>IPCF-CNR, Pisa, Italy

| Aims and scope | Basic equations | Liouville eigenfunctions | Green function<br>o | Completeness<br>o | Wave equation | Conclusions |
|----------------|-----------------|--------------------------|---------------------|-------------------|---------------|-------------|
| Outline        |                 |                          |                     |                   |               |             |

- Aims and scope
- 2 Basic equations
- Liouville eigenfunctions
- Green function
- 5 Completeness
- 6 Wave equation
- Conclusions

| Aims and scope     | Basic equations | Liouville eigenfunctions | Green function | Completeness | Wave equation | Conclusions |
|--------------------|-----------------|--------------------------|----------------|--------------|---------------|-------------|
| 0000               |                 |                          |                |              |               |             |
| Origins and motiva | ation           |                          |                |              |               |             |

# **Origins and motivation**

- Vlasov linear oscillations of an 1D-inhomogeneous collisionless plasma having singular particle distributions;
- oscillation eigenvalue problem with none of the cold, "fluid", or "kinetic" limits;
- example: wave equation in a collisionless electrostatic double layer at finite temperature.

| Aims and scope<br>○●○○ | Basic equations | Liouville eigenfunctions | Green function | Completeness<br>o | Wave equation | Conclusions |
|------------------------|-----------------|--------------------------|----------------|-------------------|---------------|-------------|
| Cornerstones           |                 |                          |                |                   |               |             |

# Cornerstones

- Unfolding singular particle distributions into ordinary functions by a fully spectral analysis, i.e. also in velocity;
- "spectroscopy" of the eigenfunction of the Liouville operator: their eigenvalues and degeneracy;
- Green function of the Vlasov operator;
- wave equation for the continuum electrostatic oscillations in a hot collisionless, inhomogeneous plasma.

| Aims and scope | Basic equations | Liouville eigenfunctions | Green function<br>o | Completeness<br>o | Wave equation | Conclusions |
|----------------|-----------------|--------------------------|---------------------|-------------------|---------------|-------------|
| Known facts    |                 |                          |                     |                   |               |             |

# **Known facts**

- General theory: the eigenfunctions of the Liouville operator are distributions;
- they have a purely real continuum as well as a discrete spectrum[1];
- warm "fluid" limit: BGK waves and electron holes are unstable against electron electrostatic perturbations[2, 3, 4];
- cold limit: purely real continuum spectrum, continuum-damped resonance-absorbing surface waves (quasi-modes) [5, 6].

| Aims and scope | Basic equations | Liouville eigenfunctions | Green function | Completeness | Wave equation | Conclusions |
|----------------|-----------------|--------------------------|----------------|--------------|---------------|-------------|
| 0000           |                 |                          |                |              |               |             |
|                |                 |                          |                |              |               |             |

#### Highlights

# Highlights of our work

- In the velocity Fourier transform space the eigenfunctions of the Liouville operator are ordinary functions;
- they have two continuous and up to three discrete degeneracies;
- they are algebraically singular (although integrable);
- they are complete;
- the Green function of the Vlasov operator has a spectral representation;
- a judicious closure gives novel hot plasma contributions in the electrostatic wave equation.

| Aims and scope | Basic equations<br>●○○ | Liouville eigenfunctions | Green function<br>o | Completeness<br>o | Wave equation | Conclusions |
|----------------|------------------------|--------------------------|---------------------|-------------------|---------------|-------------|
| Notation       |                        |                          |                     |                   |               |             |

# Notation

$$\alpha = e, i, \ Z_{\alpha} = Q_{\alpha}/|Q_e|, \ \mu_{\alpha} = \mu_{\alpha}/\mu_e$$
 : particle species,(1)

$$\Phi(x)$$
: equilibrium potential, (2)

$$-V_e = Z_e \Phi, -V_i = Z_i (\Phi - 1)$$
: potential energies, (3)

 $\omega$ ,  $k_y$ : frequency and transverse wavevenumber, (4)

$$\mathbf{q} = \begin{bmatrix} q_x \\ q_y \end{bmatrix}$$
: Fourier – conjugate of velocity vector. (5)

| Aims and scope | Basic equations<br>○●○ | Liouville eigenfunctions | Green function | Completeness<br>o | Wave equation | Conclusions |
|----------------|------------------------|--------------------------|----------------|-------------------|---------------|-------------|
| Fields         |                        |                          |                |                   |               |             |

# Fields $|F\rangle = \begin{bmatrix} e^{-\beta_{e}(q_{x}^{2}+q_{y}^{2})/2-V_{e}} \\ \\ e^{-\beta_{i}(q_{x}^{2}+q_{y}^{2})/2-V_{i}} \end{bmatrix}$ : equilibrium distribution, (6) $|f_{k_{y}\omega}\rangle = \begin{bmatrix} f_{ek_{y}\omega}(x, q_{x}, q_{y}) \\ f_{i_{k_{y}\omega}}(x, q_{x}, q_{y}) \end{bmatrix}$ : perturbed distribution, (7) $\mathbf{e}_{k_{y}\omega} = \begin{bmatrix} \mathbf{e}_{xk_{y}\omega}(x) \\ \mathbf{e}_{xk_{y}\omega}(x) \end{bmatrix} : \text{ electric field.}$ (8)



## **Electrostatic Maxwell equations**

 $\overbrace{\nabla^{2}[-\omega^{2}+\omega_{p}^{2}]e_{xk_{y}\omega}-k_{y}^{2}[\omega_{p}^{2}]'\int\mathrm{d}xe_{xk_{y}\omega}}^{\text{hot plasma terms}}=\overbrace{-\sum_{\alpha}[S_{\alpha\alpha k_{y}}^{2}f_{\alpha k_{y}\omega}]_{\mathbf{q}=0}^{2}}^{\text{hot plasma terms}},$   $'=\partial/\partial x, \ \omega_{p}=\sqrt{\sum_{\alpha}Z_{\alpha}F_{\alpha}}|_{\mathbf{q}=0}/\mu_{\alpha}: \text{plasma frequency.}$ (11)

| Aims and scope    | Basic equations                                                                   | Liouville eigenfunctions                                                      | Green function                             | Completeness<br>o                     | Wave equation         | Conclusions |
|-------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------|-----------------------|-------------|
| Liouville eigenva | lue problem                                                                       |                                                                               |                                            |                                       |                       |             |
| Liou              | ville eigen <sup>,</sup>                                                          | value problem                                                                 | 1                                          |                                       |                       |             |
|                   |                                                                                   | $\mathcal{S}_{k_y} \chi_{k_y\sigma} angle$                                    | $=\sigma \chi_{k_y\sigma} angle$           |                                       | (12                   | ?)          |
|                   |                                                                                   |                                                                               |                                            |                                       |                       |             |
| Eige              | nfunctions                                                                        | of the Liouvi                                                                 | lle operat                                 | or                                    |                       |             |
| $\chi$            | $s_{\alpha}_{\alpha\sigma\gamma_{\alpha}}=rac{C_{\alpha}}{ u_{\alpha\gamma} }$   | $\frac{\alpha}{ \gamma_{\alpha} } e^{-is_{\alpha}(\sigma-k_{y}c_{\alpha})}$   | $\xi_{\alpha\gamma_{lpha}}+is_{lpha}q_{x}$ | $ u_{\alpha\gamma_{\alpha}} +iq_yc_c$ | <b>•</b> , (13        | \$)         |
| S                 | $\alpha = \pm, \ \boldsymbol{u}_{\alpha\gamma\sigma}$                             | $s_{\alpha}(x) = s_{\alpha} \{2[$                                             | $\gamma_{\alpha} + V_{\alpha}(x)$          | $)]/\mu_{\alpha}\},$                  |                       |             |
| ξα                | $\alpha_{\gamma_{\alpha}}(x) = \int$                                              | $dx/ u_{\alpha\gamma_{\alpha}}(x) ,$                                          |                                            |                                       |                       |             |
| $\alpha$          | $=$ e, i, $s_{\alpha}$ =                                                          | $=\pm:$ discrete r                                                            | eal degen                                  | eracy par                             | ameters,              |             |
| _                 | $\infty < oldsymbol{c}_lpha < \infty < oldsymbol{c}_lpha < \max(V_lpha) < \infty$ | $\left\{\begin{array}{l}\infty\\<\gamma_{\alpha}<\infty\end{array}\right\}$ : | continuou<br>degenera                      | is real<br>Icy param                  | eters <sup>,(14</sup> | )           |
| 0                 | $<\gamma_{lpha}<\infty$                                                           | $: -\infty < \sigma < \infty$                                                 | o : continu                                | lous spec                             | r <mark>trum</mark> , |             |
| -                 | $\max(V_{\alpha}) <$                                                              | $< \gamma_{lpha} < 0 : \sigma =$                                              | $n\omega_{\rm b}$ : disc                   | crete spec                            | trum .                |             |

| Aims and scope | Basic equations | Liouville eigenfunctions | Green function | Completeness | Wave equation | Conclusions |
|----------------|-----------------|--------------------------|----------------|--------------|---------------|-------------|
|                |                 | 0000                     |                |              |               |             |

#### Liouville-Bloch eigenfunctions in a periodic potential



**Figure 1 :** Real (continuous line) and imaginary (dashed line) parts of the free electron (top left), free ion (top right), trapped electron (bottom left) and trapped ion (bottom right) eigenfunctions of the Liouville operator in a periodic potential. Particle motion is forbidden in the shaded areas. Note the *algebraic singularity* of the eigenfunctions at the reflection points.



## Liouville eigenfunctions in a double layer



**Figure 2 :** same as in Fig. 1 for the eigenfunctions of the Liouville operator in a double layer potential.



### Liouville eigenfunctions in an electron hole



**Figure 3 :** same as in Fig. 1 for the eigenfunctions of the Liouville operator in a electron hole potential.



#### Liouville eigenfunctions in a non nonotonic ion hole



**Figure 4 :** same as in Fig. 1 for the eigenfunctions of the Liouville operator in an asymmetric ion hole.

| Aims and scope            | Basic equations                                                   | Liouville eigenfunctions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Green function •                                           | Completeness<br>o                                                                | Wave equation                   | Conclusions |
|---------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------|-------------|
| Green function of         | the Vlasov operato                                                | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            |                                                                                  |                                 |             |
| Gree                      | n function                                                        | of the Vlasov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | operator                                                   | •                                                                                |                                 |             |
| $G_{lpha a}$              | $\alpha' \kappa_{y\omega}(x, q_x,$                                | $q_y; s, p_x, p_y) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :                                                          |                                                                                  |                                 |             |
| $\delta_{lpha}$           | $\alpha' \sum_{\boldsymbol{s}_{\alpha}=\pm} .$                    | $\int_{-\infty}^{\infty}\mathrm{d}\mathcal{c}_{lpha}\int_{-V_{lpha}(s)}^{\infty}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $d\gamma_{\alpha}\int_{-\infty}^{\infty} d\gamma_{\alpha}$ | $\frac{A_{\alpha}^{s_{\alpha}}\mathrm{d}\sigma}{\sigma-\omega+is_{\alpha}0^{+}}$ | $\times \left\{ x > s \right\}$ | ;           |
| $\chi^{\mathfrak{s}}_{c}$ | $\sum_{\alpha k_y \sigma c_\alpha \gamma_\alpha}^{\sigma} (x, x)$ | $(q_x, q_y) ar{\chi}^{s_lpha}_{lpha k_y \sigma c_lpha \gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $f_{\alpha}(s, p_x, p_y)$                                  | ·)+                                                                              | )<br>(15                        | 5)          |
| $\delta_{\alpha}$         | $\alpha' \sum_{s_{\alpha}=\pm} \ldots$                            | $\int_{-\infty}^{\infty} \mathrm{d} c_{\alpha} \int_{-V_{\alpha}(x)}^{\infty} dc_{\alpha} \int_{-V_{\alpha}(x)}^{\infty} dc_{$ | $d\gamma_{\alpha}\int_{-\infty}^{\infty}$                  | $\frac{B^{s_{\alpha}}_{\alpha} d\sigma}{\sigma - \omega + i s_{\alpha} 0^{+}}$   | $\times \left\{ x < s \right\}$ | 5           |
| $\chi_{c}$                | $\alpha k_y \sigma c_\alpha \gamma_\alpha (X,$                    | $(\mathbf{q}_{\mathbf{x}}, \mathbf{q}_{\mathbf{y}}) \chi^{\sigma \alpha}_{\alpha \mathbf{k}_{\mathbf{y}} \sigma \mathbf{c}_{\alpha} \gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(s, \rho_x, \rho_y)$                                      | $, \sum_{s_{\alpha}=\pm}$                                                        | J                               |             |

# Scattering amplitudes (related to boundary conditions)



| Aims and scope | Basic equations | Liouville eigenfunctions | Green function | Completeness | Wave equation | Conclusions |
|----------------|-----------------|--------------------------|----------------|--------------|---------------|-------------|
|                |                 |                          |                | •            |               |             |

Completeness of the Liouville eigenfunctions

## Initial value theorem for Laplace transforms

$$(i\partial/\partial t + S_{k_{y}})|f\rangle = 0, \ f_{\alpha}(x, q_{x}, q_{y}, 0) = -ih_{\alpha}(x, q_{x}, q_{y}), (18)$$

$$f_{\alpha}(x, q_{x}, q_{y}, 0^{+}) = \lim_{\omega \to -i\infty} i\omega g_{\alpha\omega}(x, q_{x}, q_{y}), \qquad (19)$$

$$(S_{k_{x}} - \omega)|g_{\omega}\rangle = |h\rangle. \qquad (20)$$

Expansion of an arbitrary function  $\Rightarrow$  COMPLETENESS





| 0000           | 000             | 00000                    |                |              | 00            |             |
|----------------|-----------------|--------------------------|----------------|--------------|---------------|-------------|
| Aims and scope | Basic equations | Liouville eigenfunctions | Green function | Completeness | Wave equation | Conclusions |

Asymptotic analysis: hot plasma ( $p_y \simeq 1/\sqrt{eta_{e,i}} \ll 1$ )

$$F_{\alpha} = e^{-\beta_{\alpha}(q_{x}^{2} + q_{y}^{2})/2} e^{-V_{\alpha}(x)}, \qquad (23)$$

$$\theta = \sum_{\alpha} \frac{1}{\beta_{\alpha}},\tag{24}$$

$$\omega_{\rm p} = \sqrt{\sum_{\alpha} Z_{\alpha} F_{\alpha}} |_{{\bf q}=0} / \mu_{\alpha}$$
 : plasma frequency. (25)

**Electrostatic Maxwell equations** 

$$\nabla^{2}[-\omega^{2} + \omega_{p}^{2}(1+\theta)]\boldsymbol{e}_{\boldsymbol{x}\boldsymbol{k}\boldsymbol{y}\boldsymbol{\omega}} = \boldsymbol{k}_{\boldsymbol{y}}^{2}[\omega_{p}^{2}]'\int d\boldsymbol{x}\boldsymbol{e}_{\boldsymbol{x}\boldsymbol{k}\boldsymbol{y}\boldsymbol{\omega}} + \theta\left[\boldsymbol{k}_{\boldsymbol{y}}^{2}[\omega_{p}^{2}]' - \omega^{2}\omega_{p}^{2}\frac{\partial}{\partial\boldsymbol{x}}\right]\boldsymbol{e}_{\boldsymbol{x}\boldsymbol{k}\boldsymbol{y}\boldsymbol{\omega}}.$$
(26)

| Aims and scope | Basic equations | Liouville eigenfunctions | Green function | Completeness | Wave equation | Conclusions |
|----------------|-----------------|--------------------------|----------------|--------------|---------------|-------------|
|                |                 |                          |                |              |               |             |

# Highlights of our work

- In the velocity Fourier transform space the eigenfunctions of the Liouville operator are ordinary functions;
- they have two continuous and up to three discrete degeneracies;
- they are algebraically singular (although integrable);
- they are complete;
- the Green function of the Vlasov operator has a spectral representation;
- a judicious closure gives novel hot plasma contributions in the electrostatic wave equation.

| Aims and scope | Basic equations | Liouville eigenfunctions | Green function | Completeness | Wave equation | Conclusions |
|----------------|-----------------|--------------------------|----------------|--------------|---------------|-------------|
|                |                 |                          |                |              |               |             |

## Bibliography

- H.R. Lewis and K.R. Symon. J. Math. Phys., 20 1979.
- J.L. Schwarzmeier, H.R. Lewis, and B. Abraham-Shrauner. *Phys. Fluids*, **22** 1747, 1979.
- H. Schamel. *Phys. Rev. Lett.*, **48** 481, 1982.
- J.R. Collantes and V.A. Turikov. *Phys. Scr.*, **38** 825, 1988.
- Z. Sedláček. J. Plasma Phys., 5 239, 1971.
- Z. Sedláček. J. Plasma Phys., 6 187, 1971.
- Z. Sedlacek and L. Nocera. J. Plasma Phys., 48 367, 1992.