Synthesis of Ternary B$_x$C$_y$N$_z$ Compounds from Thermolysis of 1,2 – Diamineborane towards hybrid BCN monolayer

Lorenzo Massimi, Carlo Mariani and Maria Grazia Betti
LoTUS laboratory, dipartimento di fisica, Università di Roma “La Sapienza”

Alessandro Latini
Dipartimento di Chimica, Università di Roma “La Sapienza”

Fabrice Leardini
Dpto. De Fisica de Materiales M-04, Facultad de Ciencias, Universidad Autonoma de Madrid

101° SIF meeting, Roma 21-25 September
Graphene vs h-BN

Graphene

No Gap
Metallic

25/9/2015
Graphene vs h-BN

Graphene

Isostructural
2\% lattice constant mismatch

h-BN

Isoelectronic

No Gap
Metallic

25/9/2015
Graphene vs h-BN

Graphene

- No Gap
- Metallic

h-BN

- Bandgap
- Insulator

Isoelectronic

Isostructural
2% lattice constant mismatch

25/9/2015
Hybrid BCN systems

Growing of hybrid Gr and h-BN layer

Hybridized $h\text{-}B\text{N}_{x\times x\times y}$ structures would have interesting properties combining graphene and h-BN properties.
Hybrid BCN systems

Growing of hybrid Gr and h-BN layer
Hybridized h-BN$_{x}N_{x}C_{y}$ structures would have interesting properties combining graphene and h-BN properties

Electronic properties
Hybrid BCN systems

Growing of hybrid Gr and h-BN layer
Hybridized h-$B_N\;C_y$ structures would have interesting properties combining graphene and h-BN properties

Electronic properties

Structural configuration
Hybrid BCN systems

Growing of hybrid Gr and h-BN layer

Hybridized $h-B_{x}N_{x}C_{y}$ structures would have interesting properties combining graphene and h-BN properties.

Electronic properties

Problems: Phase segregation

“Pure” bonds are preferred to hybrid ones

Growth of atomic layer

Epitaxial growth by precursor decomposition on transition metal surfaces

500 - 1000°C
Growth of atomic layer

Epitaxial growth by precursor decomposition on transition metal surfaces

- Methane
- Ethane
- Ethylene

Graphene

500 - 1000°C
Growth of atomic layer

Epitaxial growth by precursor decomposition on transition metal surfaces

500 - 1000°C

Ammonia Borane
Borazine
Similar to benzene Liquid and not stable at room temperature
Stable at ambient conditions

Graphene
Methane
Ethane
Ethilene

h-BN

25/9/2015
Growth of atomic layer

Epitaxial growth by precursor decomposition on transition metal surfaces

500 - 1000°C

Metal

H desorption

Atomic layer

Pressure $2 \cdot 10^{-1} \text{ mbar}$
Methane Ammonia Borane

Copper

1000°C

Ci et al. Nature Mat.. 2010, 9, 430

Methane

Ethane

Ethilene

Borazine
Similar to benzene Liquid and not stable at room temperature

Ammonia Borane
Stable at ambient conditions

Graphene

h-BN
EDAB solid phase characterization

Use a single precursor containing B, C and N atoms instead of two different precursors (one for graphene and one for h-BN)

Ethylenediamine Bisborane (EDAB)

\[\text{BH}_3\text{NH}_2\text{CH}_2\text{CH}_2\text{NH}_2\text{BH}_3 \]

Crystalline at room temperature

25/9/2015
EDAB at high temperature

In vacuum thermolysis 10^{-4} mbar

![EDAB](image)
EDAB at high temperature

In vacuum thermolysis 10^{-4} mbar

H_2 desorption events at 108°C, 157°C, and polymerization

25/9/2015
EDAB at high temperature

In vacuum thermolysis 10^{-4} mbar

H$_2$ desorption events at 108°C, 157°C, and polymerization

Desorption peaks at 231°C and 550°C
EDAB at high temperature

In vacuum thermolysis 10^{-4} mbar

$200^\circ C$
EDAB
Polymerization
$1000^\circ C$
Graphitization

H_2 desorption events at 108°C, 157°C, and polymerization

Desorption peaks at 231°C and 550°C
Presence of flake-like regions with sharp edges or compact areas
EDAB at high temperature

XRD broad peaks $2\theta = 24.2^\circ, 43.0^\circ$ of a poorly crystalline graphitic phase
EDAB at high temperature

XRD broad peaks $2\theta = 24.2^\circ$, 43.0° of a poorly crystalline graphitic phase

Sharp diffraction peaks assigned to Ammonium Hydroxide Borate Hydrate (or Ammonium Borate Hydrate $\text{B}_5\text{H}_{12}\text{NO}_{12}$), graphite and $(\text{BN})_{0.26} \text{C}_{0.74}$
EDAB at high temperature

Energy X-ray dispersive analysis (EDX) shows mixing of B, C, N

XRD broad peaks $2\theta = 24.2^\circ, 43.0^\circ$ of a poorly crystalline graphitic phase

Sharp diffraction peaks assigned to Ammonium Hydroxide Borate Hydrate (or Ammonium Borate Hydrate $\text{B}_5\text{H}_{12}\text{NO}_{12}$), graphite and $(\text{BN})_{0.26}\text{C}_{0.74}$
EDAB at high temperature

C 1s from sp3 to sp2 hybridization (284.4 eV)

Wilson et al. Nano Research 2013, 6, 99
EDAB at high temperature

C 1s from sp3 to sp2 hybridization (284.4 eV)

Presence of hybrid C – N and C – B bonds

Ci et al. Nature Mat.. 2010, 9, 430

Wilson et al. Nano Research 2013, 6, 99
EDAB at high temperature

C 1s from sp3 to sp2 hybridization (284.4 eV)

Presence of hybrid C – N and C – B bonds

C 1s from sp3 to sp2 hybridization (284.4 eV)
Wilson et al. Nano Research 2013, 6, 99

Presence of hybrid C – N and C – B bonds
Ci et al. Nature Mat.. 2010, 9, 430

N 1s (399.2 eV) in agreement with presence of B-N and C-N coordination
EDAB at high temperature

C 1s from sp3 to sp2 hybridization (284.4 eV)

Presence of hybrid C – N and C – B bonds

C 1s from sp3 to sp2 hybridization (284.4 eV)
Ci et al. Nature Mat. 2010, 9, 430

Wilson et al. Nano Research 2013, 6, 99

N 1s (399.2 eV) in agreement with presence of B-N and C-N coordination
Ci et al. Nature Mat. 2010, 9, 430

B 1s (192.6 eV) in agreement with the presence of prevalent boron oxide mixed with B-N, B-C coordination

B : C : N = 0.2 : 1 : 0.4
Conclusions

Formation of hybrid BCN is a new challenge for scientist providing a new class of monolayer material with tunable electronic structure
Conclusions

Formation of hybrid BCN is a new challenge for scientist providing a new class of monolayer material with tunable electronic structure

We demonstrate formation of poor crystalline graphitic phase with B and N doping, from high temperature thermolysis of a single molecular precursor (EDAB)
Thank you for your attention