Impact of intermittent renewable energy sources (RES) on electricity production in Italy

Francesco Romanelli
ENEA Frascati

Acknowledgments to TERNA for the support on the data
Italy already achieved the 2020 objective of 35% electricity from renewable sources

Source: TERNA Dati Statistici 2013
Motivation

• Case study: electric energy produced by RES equal to the annual electricity demand.

• However, for the periods with insufficient RES production back-up systems (thermal plants) have to be kept in operation.

• How large the installed back-up power must be?

• Requirements for the storage to avoid/reduce the back-up power?

• Impact on the power managed by the grid?
Data analysis

• Data for the year 2013 (load and renewables generation) from the grid operator Terna. Data averaged over 1 hour.
• Demand (load) kept at the 2013 value.
• PV and wind generation *scaled-up* in order to match annual electricity demand.
• Hydroelectric and geothermal generation at 2013 values
• With this input evaluate for each 1h time interval:
 – the back-up power \(P_{\text{backup}} \equiv P_{\text{load}} - P_{\text{PV}} - P_{\text{Wind}} \)
 – the back-up energy \(\equiv \int_{\text{year}} dt \, P_{\text{back-up}} \)
 – If \(P_{\text{backup}} < 0 \) define \(P_{\text{surplus}} = - P_{\text{backup}} \)
• Free parameters: storage capacity and PV share
Back-up energy substantially lower than load energy

Substantial reduction in CO₂ emissions.

Broad minimum obtained (Wagner 2012) for a PV share of 25% (too low for Italy).

Load energy $= \int_{\text{year}} dt P_{\text{load}}$

63 TWh

No storage
Back-up power is only slightly reduced and used at low capacity factor
A large seasonal storage capability required to avoid the back-up power

For comparison:
- Pumped storage capacity 200GWh? Pumped storage 4-7TWh possible (Gimeno-Gutiérrez and R. Lacal-Arántegui, 2013)
- Storage of 36M electric cars with 40kWh batteries ~ 1.5TWh

\[\frac{dW_{\text{storage}}}{dt} = P_{\text{PV}} + P_{\text{wind}} - P_{\text{load}} \]
Storage is effective in reducing back-up energy

Back-up energy as a fraction of the annual load

Storage capacity as a fraction of the annual load

Seasonal storage

Effect on short-term fluctuations

63TWh

$f_{PV}=25\%$

22TWh
Use of base-load + storage

- Replace high-power and on-demand back-up systems with a moderate (~10GW) constant pre-defined base-load power during the low RES production season.
 - Substantial thermal power reduction
 - Use at high capacity factor

- Limit storage to cope with the short-term fluctuations
 - Amount of storage feasible with present day technologies

Timing of $P_{\text{base-load-on}}$ phase depends on PV share.
Use of base-load + storage

- Strategy effective for PV share 60%-90% - OK for Italy
Use of base-load + storage

- **Summary**
 - Substantial reduction of the non-RES power to ~10-15GW and use with high capacity factor.
 - Strategy effective already at moderate storage capacity (~1TWh).
 - Base-load energy ~10-20% of the load energy.
Power to be managed by the grid increases as RES share increases

Note: Effects on the grid already visible in Italy during low-demand, high-RES production days. Terna is investing in upgrades.
Conclusions

• Integration of intermittent RES is challenging and requires infrastructure investments. Low reduction of back-up power with no storage.

• Storage capacity to cope with seasonal fluctuations 20-30TWh – beyond present capabilities.

• Scenarios with 100% RES production possible:
 – Base-load power ~10-15GW for the low-RES season;
 – Storage capacity ~1TWh to average over the short term fluctuations – feasible with present technologies
 – PV share 60-90% - ok for Italy

• Substantial impact on the grid expected for RES share above 40%.