

Proposal to increase the extracted beam power from the LNS-INFN Superconducting Cyclotron

101° congresso della Società Italiana di Fisica

<u>Russo A.D.</u>, Calanna A., Rifuggiato D., Calabretta L., D'Agostino G.

Overview

- Presentation of LNS-INFN accelerators: focus on the CS
- New requests for high power beams: NUMEN
- Possible upgrades to increase the extracted power
- Feasibility study for the extraction by stripping
- Beam dynamics results

INFN -LNS Laboratories

LNS-INFN Superconducting Cyclotron

Cyclotron features

n° of accelerating cavities	3
Harmonic	2
RF frequencies	15-48 MHz
Magnetic field on the mp	2.2-4.8 T
Pole radius	90 cm
External radius	190.3 cm
Total height Weight	286 cm 196 tons
K bending	800
K focusing	200

Energy = 10-80 AMeV Able to accelerate up to the Uranium

New requests for high power beams: NUMEN

2 test-run done in October 2014 and February 2015 ⁴⁰Ca (¹⁸O, ¹⁸Ne) ⁴⁰Ar:

¹⁸O at 15 & 25 AMeV @ 6 enA

too low statistics.

Next run: ¹¹⁶Sn (¹⁸O,¹⁸Ne) ¹¹⁶Cd Energy 15- 30 AMeV Intensity needed 60 eµA

CS Upgrade

CS Upgrade:

We need to increase the extraxted beam power to 5-10kWatt for ¹²C ¹⁸O ²⁰Ne All the other beams now accelerated will be still avaible

New extraction mode with a stripper foil: Today efficiency extraction through the electrostatic deflectors ε ≈ 50%. Max extracted power is 100 Watt and only 100 Watt is the power that can be lost inside the cyclotron. It is necessary increase the efficency.

What is stripping extraction?

Expected extraction efficiency 99%

101° Congresso SIF

Antonio Domenico Russo

Two extraction channels

Overview of all extraction orbits:

a new extraction channel, 30 deg away simplify the extraction system for a lot of ions.

That means smaller radial and axial enveloppes and less and weaker magnetic corrections needed

Radial and axial enveloppes including energy spread

12Carbon 45 A MeV g=+4 -> g=+6 energy spread 3‰ 3.5 MC #1 #2#3 th_{str} =104 deg 2.5 pole radius **Example 1.5** 0.5 -0.5 -1.5 ---D7 -2.5 -3.5 90 130 170 210 250 290 330 10 130 50 90 angla [dag] 20 Neon 60 A MeV q=+7-> q=+10 energy spread 2‰ 3.5 2.5 **[u]** 1.5 0.5 -0.5 -1.5 Dx **---**Dz -2.5 -3.5 90 130 -270 -230 -190 -150 -110 -70 -30 10 50 angle [deg]

2 examples of extraction through the **NEW EXTRACTION CHANNEL**: 3 Magnetic channels after the pole radius are enough

INFN

Istituto Nazionale di Fisica Nucleare

101° Congresso SIF

Antonio Domenico Russo

From electrostatic extraction to extraction by stripping

Istituto Nazionale di Fisica Nucleare

Inner CuBe pillars removed

100

R= 930

- 900

A new set of superconducting coils and a new cryostat

A conceptual design study has been

accomplished in collaboration with MIT

101° Congresso SIF

Antonio Domenico Russo

removed

α-Coil layers to be

line of the half have

OUTER VACUUM

CHAMBER (iron)

LHe CRYOST (st. steel)

440

Cu-Be

R=1340

R=1300 R=1260

R=1248

R 1168

BSECTION

TURN STRUCTURE

MAIN 4 COIL asection

2

363

52

TRIM

COIL

Parameters of the existing coils and of the new proposed coils

Parameter	Units	alpha-old	beta-old	alpha-new	beta-new
Rmin	m	1.000	1.000	1.027	1.000
Rmax	m	1.168	1.168	1.162	1.147
Zmin	m	0.062	0.434	0.090	0.433
Zmax	m	0.426	0.686	0.385	0.684

New and old coils form factors.

The difference is 0.06%!

Further considerations

More studies are on going and both solutions are under investigation.

The new channel is definitely more appealing from a beam envelope point of view, but the mechanical constraints and modifications to the yoke and to all systems just outside the yoke are important and need to be carefully evaluated

FIRST CONCEPTUAL DESIGN OF THE NEW CRYOSTAT

Specifications

- Form factor equal to the actual in 0,1%
- Broaden the cross-section of the extraction channel
- Nitrogen and helium consumption lower than the actual ones
- Magnetic, thermic and structural computation
- Cost estimation

Antonio Domenico Russo

CONCLUSIONS

- Feasibility study of beam extraction
- Preliminary study of the new cryostat
- Detailed forecast of costs and time schedule for the full upgrade
- New design of the spiral inflector, central region and new extraction line
 On going (LNS)

To reach few kWatt of beam extracted power from the CS is feasible

On going (AS-G + LNS)

OK (LNS)

