Collins asymmetries in inclusive charged KK and $\mathrm{K} \pi$ pairs at BABAR

I. Garzia - INFN Sezione di Ferrara, F. Anulli - INFN Sezione di Roma on behalf of the BABAR Collaboration

Collins effect in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

Our understanding of the hadronic physics depends strongly on what we know about the FRAGMENTATION FUNCTIONS (FFs)

- Universal and non-perturbative objects describing the final-state hadron distributions
- Transverse Momentum Dependent (TMD) FFs \Rightarrow spin-dependent observables

When only spin-zero hadrons (π, K) are considered in the final state, we have:

$$
\mathrm{q}^{\uparrow} \rightarrow \mathrm{hX}: \quad D_{1}^{q \uparrow}\left(z, \mathbf{P}_{\perp} ; s_{q}\right)=D_{1}^{q}\left(z, P_{\perp}\right)+\frac{P_{\perp}}{z M_{h}} H_{1}^{\perp q}\left(z, P_{\perp}\right) \mathbf{s}_{q} \cdot\left(\mathbf{k}_{q} \times \mathbf{P}_{\perp}\right)
$$

Unpolarized FF
Collins FF [NPB 396, 161 (1993)]
In $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}$, spins unknown, but $\mathrm{s}_{\mathrm{q}} \| \mathrm{s}_{\overline{\mathrm{q}}}$ whit transverse spin component $\sim \sin ^{2} \theta$

- exploit this correlation by using hadrons in opposite jets
- define favored ($u \rightarrow \pi^{+}, d \rightarrow \pi^{-}$) and disfavored $\left(d \rightarrow \pi^{+}, u \rightarrow \pi^{-}, s(\bar{s}) \rightarrow \pi^{ \pm}\right)$FFs

Example: Unlike (U) $\pi \pi$ pairs PRD 90,052003 (2014)

Example: Unlike (U) KK pairs BaBar preliminary

$$
\left.\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{q} \overline{\mathbf{q}} \rightarrow \mathbf{h}_{1} \mathbf{h}_{2} \mathbf{X} \quad(\mathbf{q}=\mathbf{u}, \mathbf{d}, \mathbf{s}) \Rightarrow \sigma \propto \cos \left(\phi_{\mathrm{h} 1 \mathrm{~h} 2}\right) \mathbf{H}_{1}{ }^{\perp}(\mathbf{h} 1) \times \mathbf{H}_{1}{ }^{\perp} \mathbf{h}_{2}\right)
$$

Reference frames

RF12

RF0
θ_{2} : angle between the $\mathrm{e}^{+} \mathrm{e}^{-}$axis and $\mathrm{P}_{\mathrm{h} 2}$;
φ_{0} : angle between the plane spanned by $\mathrm{P}_{\mathrm{h} 2}$ and the $\mathrm{e}^{+} \mathrm{e}^{-}$ axis, and the direction of $\mathrm{P}_{\mathrm{h} 1}$ perpendicular to $\mathrm{P}_{\mathrm{h} 2}$.

All quantities in $\mathrm{e}^{-} \mathrm{e}^{-}$center of mass

$$
\begin{aligned}
\frac{d \sigma\left(e^{+} e^{-} \rightarrow h_{1} h_{2} X\right)}{d \Omega d z_{1} d z_{2} d^{2} \vec{q}_{T}} & =\frac{3 \alpha^{2}}{Q^{2}} z_{1}^{2} z_{2}^{2}\left\{A(y) \mathcal{F}\left[D_{1} \bar{D}_{2}\right]+\right. \\
& \left.+B(y) \cos \left(2 \phi_{0}\right) \mathcal{F}\left[\left(2 \hat{h} \cdot \vec{k}_{T} \hat{h} \cdot \vec{p}_{T}-\vec{k}_{T} \cdot \vec{p}_{T}\right) \frac{H_{1}^{\perp} \bar{H}_{2}^{\perp}}{M_{1} M_{2}}\right]\right\}
\end{aligned}
$$

Analysis strategy: double ratios

Goal: simultaneous measurement of $\mathbf{K K}, \mathbf{K} \pi$, and $\pi \pi$ pairs

1. We measure the azimuthal angles ϕ_{1} and ϕ_{2} in RF12, and ϕ_{0} in RF0
2. We construct the normalized distributions for like (L), Unlike (U) and Charged ($\mathrm{C}=\mathrm{U}+\mathrm{L}$) hadron pairs: $\mathrm{R}^{\mathrm{i}}=\mathrm{N}^{\mathrm{i}}(\phi) /<\mathrm{N}>$

- The Collins effect is not simulated in MC \rightarrow strong azimuthal MC modulation principally due to the detector acceptance
- Collins effect in data \rightarrow different combinations of fav and dis FFs for L, U, and C

3. We calculate the ratios of normalized distributions: U/L and U / C and we fit these distributions ($\left.\mathrm{B}+\mathrm{A} \cdot \cos \left(\phi_{\mathrm{i}}\right)\right)$

- detector effects cancel out

4. We extract the Collins asymmetries, we correct for the K / π misidentification and background contributions, and we study systematic uncertainties
5. RESULTS: $4 \times 4\left(z_{1}, z_{2}\right)$ bins, where $z_{1,2}=2 E_{h} / V_{\text {s }}$ is the hadron fractional energy
${ }^{\hat{\nu}} \mathrm{Z}_{1,2}=(0.15-0.2),(0.2-0.3),(0.3-0.5),(0.5-0.9)$

Event and track selection

More stringent cuts optimized in order to reduce biases on the KK pairs

EVENT SELECTION

- Number of charged tracks >2
- Selection of two jets topology: thrust >0.8
- $\left|\cos \theta_{\text {thrust }}\right|<\mathbf{0 . 6}$
- Visible energy $\mathbf{E v i s}>\mathbf{1 1} \mathbf{~ G e V}$
- Most energetic photon $\mathbf{E}_{\gamma}<2 \mathbf{G e V}$

Thrust axis: charged tracks + neutral candidates; thrust axis direction chosen random

TRACK SELECTION

- Electrons and muons veto
- K and π in the DIRC acceptance region
- K / π fractional energy $z: 0.15<z<0.9$
- Opening angle $\theta_{\mathrm{h} \text {-thrust }}$ of hadron with respect to the thrust axis $<45^{\circ}$
- $\mathrm{Q}_{\mathrm{t}}<3.5 \mathrm{GeV}$, where Q_{t} is the transverse momentum of the virtual photon in the two hadrons center-of-mass energy

Measurement of Collins asymmetries

Simultaneous extraction of the asymmetries corrected for backgrounds and K / π misidentification for each interval of fractional energy

- 3 samples: $\mathrm{KK}, \mathrm{K} \pi, \pi \pi$
- we fit independently the double ratio distributions of the three samples

$$
\begin{aligned}
A_{K K}^{m e a s}= & \frac{F_{u d s}^{K K} \cdot\left(\xi_{K K}^{(K K)} A_{K K}+\xi_{K \pi}^{(K K)} A_{K \pi}+\xi_{\pi \pi}^{(K K)} A_{\pi \pi}\right)+}{} \\
& \stackrel{F_{c \bar{c}}^{K K}}{(K)} \cdot\left(\xi_{K K}^{(K K) c \bar{c}} A_{K K}^{c h}+\xi_{K \pi}^{(K K) c \bar{c}} A_{K \pi}^{c h}+\xi_{\pi \pi}^{(K K) c \bar{c}} A_{\pi \pi}^{c h}\right) \\
A_{K K}^{D^{*}}= & \stackrel{f_{u d s}^{K K} \cdot\left(\xi_{K K}^{(K K) D^{*}} A_{K K}+\xi_{K \pi}^{(K K) D^{*}} A_{K \pi}+\xi_{\pi \pi}^{(K K) D^{*}} A_{\pi \pi}\right)+}{f_{c \bar{c}}^{K K}} \cdot\left(\xi_{K K}^{(K K) c \bar{c}-D^{*}} A_{K K}^{c h}+\xi_{K \pi}^{(K K) c \bar{c}-D^{*}} A_{K \pi}^{c h}+\xi_{\pi \pi}^{(K K) c \bar{c}-D^{*}} A_{\pi \pi}^{c h}\right)
\end{aligned}
$$

1. Background sources:

- mainly from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathbf{c} \overline{\mathbf{c}}$ events (more than 30%); smaller contribution from $\mathrm{B} \overline{\mathrm{B}}, \tau^{+} \tau^{-}\left(\mathrm{A}_{\mathrm{bb}} \sim \mathrm{A}_{\tau} \sim 0\right)$
- we construct a D^{*}-enhanced MC and data control samples
- we calculate from MC the fraction $\left(F(f)_{\text {sig bkg }}{ }^{\text {th }}\right.$) of hadron pairs coming from signal (uds) and background events ($\mathrm{c} \overline{\mathrm{c}}, \mathrm{B} \overline{\mathrm{B}}, \tau^{+} \tau^{-}$)

2. K / π misidentification:

- we evaluate from MC the fraction ($\xi_{\text {Lh }}{ }^{(h h)}$) that a given hadron pair is reconstructed as $\mathrm{KK}, \mathrm{K} \pi$, or $\pi \pi$ pair
 c $\bar{c}-D^{*}\left(\xi_{\text {hb }}{ }^{\left.(h h) c \bar{c}-D^{*}\right)}\right.$

Measurement of Collins asymmetries

Simultaneous extraction of the asymmetries corrected for backgrounds and K / π misidentification for each interval of fractional energy

- 3 samples: $\mathrm{KK}, \mathrm{K} \pi, \pi \pi$
- we fit independently the double ratio distributions of the three samples

$$
\begin{aligned}
A_{K K}^{m e a s}= & F_{u d s}^{K K} \cdot\left(\xi_{K K}^{(K K)} A_{K K}+\underline{\xi_{K \pi}^{(K K)}} A_{K \pi}+\xi_{\pi \pi}^{(K K)} A_{\pi \pi}\right)+ \\
& F_{c \bar{c}}^{K K} \cdot\left(\underline{\left.\xi_{K K}^{(K K}\right) c \bar{c}} A_{K K}^{c h}+\underline{\left.\xi_{K \pi}^{(K K) c \bar{c}} A_{K \pi}^{c h}+\underline{\xi_{\pi \pi}^{(K K) c \bar{c}}} A_{\pi \pi}^{c h}\right)}\right. \\
A_{K K}^{D^{*}}= & f_{u d s}^{K K} \cdot\left(\xi_{K K}^{(K K) D^{*}} A_{K K}+\overline{\left.\xi_{K \pi}^{(K K) D^{*}} A_{K \pi}+\xi_{\pi \pi}^{(K K) D^{*}} A_{\pi \pi}\right)+}\right. \\
& f_{c \bar{c}}^{K K} \cdot\left(\xi_{K K}^{(K K) c \bar{c}-D^{*}} A_{K K}^{c h}+\xi_{K \pi}^{(K K) c \bar{c}-D^{*}} A_{K \pi}^{c h}+\xi_{\pi \pi}^{(K K) c \bar{c}-D^{*}} A_{\pi \pi}^{c h}\right)
\end{aligned}
$$

1. Background sources:

- mainly from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathbf{c} \bar{c}$ events (more than 30%); smaller contribution from $\mathrm{B} \overline{\mathrm{B}}, \tau^{+} \tau^{-}\left(\mathrm{A}_{\mathrm{bb}} \sim \mathrm{A}_{\tau} \sim 0\right)$
- we construct a D^{*}-enhanced MC and data control samples
- we calculate from MC the fraction $\left(F(f)_{\text {sig bkg }}{ }^{\text {th }}\right.$) of hadron pairs coming from signal (uds) and background events ($\mathrm{c} \overline{\mathrm{c}}, \mathrm{B} \overline{\mathrm{B}}, \tau^{+} \tau^{-}$)

2. $\mathbf{K} / \boldsymbol{\pi}$ misidentification:

- we evaluate from MC the fraction $\left(\xi_{\text {Lh }}{ }^{(\text {th) })}\right.$) that a given hadron pair is reconstructed as $\mathrm{KK}, \mathrm{K} \pi$, or $\pi \pi$ pair
- fractions evaluated in all samples used in the analysis: ids $\left(\xi_{\text {lh }}{ }^{(h h)}\right), D^{*}$-ids $\left(\xi_{\text {hh }}{ }^{(\text {(h) }}{ }^{*}\right), c \bar{c}\left(\xi_{\text {Lh }}{ }^{(h h) c \bar{c}}\right)$, c $\bar{c}-D^{*}\left(\xi_{\text {Sh }}{ }^{(\text {(h) }) c \bar{c}-D^{*}}\right)$

Measurement of Collins asymmetries: system of equations

Three samples $(\mathrm{KK}, \mathrm{K} \pi, \pi \pi)+$ background $+\mathrm{K} / \pi$ misidentification \Rightarrow system of six equations and six unknown parameters

$$
\begin{aligned}
A_{K K}^{m e a s}= & F_{u d s}^{K K} \cdot\left(\xi_{K K}^{(K K)} A_{K K}+\xi_{K \pi}^{(K K)} A_{K \pi}+\xi_{\pi \pi}^{(K K)} A_{\pi \pi}\right)+ \\
& F_{c \bar{c}}^{K K} \cdot\left(\xi_{K K}^{(K K) c \bar{c}} A_{K K}^{c h}+\xi_{K \pi}^{(K K) c \bar{c}} A_{K \pi}^{c h}+\xi_{\pi \pi}^{(K K) c \bar{c}} A_{\pi \pi}^{c h}\right) \quad \text { asymmetries for } \\
A_{K \pi}^{m e a s}= & F_{u d s}^{K \pi} \cdot\left(\xi_{K K}^{(K \pi)} A_{K K}+\xi_{K \pi}^{(K \pi)} A_{K \pi}+\xi_{\pi \pi}^{(K \pi)} A_{\pi \pi}\right)+ \\
& F_{c \bar{c}}^{K \pi} \cdot\left(\xi_{K K}^{(K \pi) c \bar{c}} A_{K K}^{c h}+\xi_{K \pi}^{(K \pi) c \bar{c}} A_{K \pi}^{c h}+\xi_{\pi \pi}^{(K \pi) c \bar{c}} A_{\pi \pi}^{c h}\right) \\
A_{\pi \pi}^{m e a s}= & F_{u d s}^{\pi \pi} \cdot\left(\xi_{K K}^{(\pi \pi)} A_{K K}+\xi_{K \pi}^{(\pi \pi)} A_{K \pi}+\xi_{\pi \pi}^{(\pi \pi)} A_{\pi \pi}\right)+ \\
& F_{c \bar{c}}^{\pi \pi} \cdot\left(\xi_{K K}^{(\pi \pi) c \bar{c}} A_{K K}^{c h}+\xi_{K \pi}^{(\pi \pi) c \bar{c}} A_{K \pi}^{c h}+\xi_{\pi \pi}^{(\pi \pi) c \bar{c}} A_{\pi \pi}^{c h}\right) \\
A_{K K}^{D^{*}}= & f_{u d s}^{K K} \cdot\left(\xi_{K K}^{(K K) D^{*}} A_{K K}+\xi_{K \pi}^{(K K) D^{*}} A_{K \pi}+\xi_{\pi \pi}^{(K K) D^{*}} A_{\pi \pi}\right)+ \\
& f_{c \bar{c}}^{K K} \cdot\left(\xi_{K K}^{(K K) c \bar{c}-D^{*}} A_{K K}^{c h}+\xi_{K \pi}^{(K K) c \bar{c}-D^{*}} A_{K \pi}^{c h}+\xi_{\pi \pi}^{(K K) c \bar{c}-D^{*}} A_{\pi \pi}^{c h}\right) \\
A_{K \pi}^{D^{*}}= & f_{u d s}^{K \pi} \cdot\left(\xi_{K K}^{(K \pi) D^{*}} A_{K K}+\xi_{K \pi}^{(K \pi) D^{*}} A_{K \pi}+\xi_{\pi \pi}^{(K \pi) D^{*}} A_{\pi \pi}\right)+ \\
& f_{c \bar{c}}^{K \pi} \cdot\left(\xi_{K K}^{(K \pi) c \bar{c}-D^{*}} A_{K K}^{c h}+\xi_{K \pi}^{(K \pi) c \bar{c}-D^{*}} A_{K \pi}^{c h}+\chi_{\pi \pi}^{(K \pi) c \bar{c}-D^{*}} A_{\pi \pi}^{c h}\right) \\
A_{\pi \pi}^{D^{*}=}= & f_{u d s}^{\pi \pi} \cdot\left(\xi_{K K}^{(\pi \pi) D^{*}} A_{K K}+\xi_{K \pi}^{(\pi \pi) D^{*}} A_{K \pi}+\xi_{\pi \pi}^{(\pi \pi) D^{*}} A_{\pi \pi}\right)+ \\
& f_{c \bar{c}}^{\pi \pi} \cdot\left(\xi_{K K}^{(\pi \pi) c \bar{c}-D^{*}} A_{K K}^{c h}+\xi_{K \pi}^{(\pi \pi) c \bar{c}-D^{*}} A_{K \pi}^{c h}+\xi_{\pi \pi}^{(\pi \pi) c \bar{c}-D^{*}} A_{\pi \pi}^{c h}\right)
\end{aligned}
$$

Asymmetry corrections and systematic studies

A large number of systematic checks were done. The main contributions come from:

- MC uncertainties
- Particle identification (PID)
- Fit procedure
- Dilution method
- Evis cut

Negligible contributions from

- Beam polarization studies
- Consistency between different data taking period
- Possible coupling between Collins and detector effect

- RF12: strong dilution observed \Rightarrow correction ranges between 1.3 to 2.3 for increasing z

The experimental method assumes the thrust axis as $\mathbf{q} \bar{q}$ direction, but this is only a rough approximation

- RF12: the azimuthal angles are calculated respect to the thrust axis \rightarrow large smearing;
- RF0: no thrust axis needed \rightarrow smearing due only to PID and tracking resolution.
\Rightarrow Using the MC sample, we introduce in the simulation
several values of asymmetries, and we study the differences between the simulated and the reconstructed ones

Same corrections applied for the three hadron pair combinations

- RF0: no correction needed

Results

Simultaneous measurement of $\mathrm{KK}, \mathrm{K} \pi$ and $\pi \pi$ Collins asymmetries
arXiv:1506.05864

- all corrections are applied
- statistical and systematic uncertainties represented by error bars and bands, respectively

${ }^{*}$ Rising of the asymmetry as a function of z (more pronounced for U / L)
* A ${ }^{\text {UL }}$ KK asymmetry slightly higher than pion asymmetry for high z
- KK asymmetry consistent with zero at lower z
\checkmark RESULTS SUBIMITTED FOR PUBLICATION
Note that A^{UL} and A^{UC} asymmetries are obtained using the same data sample, and are strongly correlated

Summary and conclusions

- Simultaneous extraction of $\mathrm{A}_{К К}, \mathrm{~A}_{К \pi}$, and $\mathrm{A}_{\pi \pi}$ Collins asymmetry
- arXiv:1506.05864
- Two reference frames: RF12 and RF0
- 16 ($\mathrm{z}_{1}, \mathrm{z}_{2}$)-bins
- Good agreement with previous BaBar results (PRD 90,052009 (2014))

- Agreement with theoretical prediction !? [PL B659, 234 (2008); PRD 86, 034025 (2012)]
- A^{UL} asymmetry for KK are slightly larger than $\pi \pi$
- A^{UC} asymmetry for KK are slightly lower than $\pi \pi$

Backup slides

PEP-II and the BaBar detector

- Asymmetric detector
- c.m. acceptance $-0.9<\cos \theta^{*}<0.85 \mathrm{wrt}$ e^{-}beam
- Excellent performance
- good tracking, mass resolution
- good γ, π^{0} reconstruction
- full $\mathrm{e}, \mu, \pi, \mathrm{K}$, and p identification
- Asymmetric $\mathrm{e}^{+} \mathrm{e}^{-}$collider operating at the $\Upsilon(4 \mathrm{~S})$ resonance $\left({ }^{\prime}=10.58 \mathrm{GeV}\right)$
- High Energy Ring (HER): $9.0 \mathrm{GeV} \mathrm{e}^{-}$
- Low Energy Ring (LER): 3.1 GeV e ${ }^{+}$
- c.m.-lab boost, $\beta \gamma \approx 0.56$
- High luminosity: $\mathcal{L} \sim 468 \mathrm{fb}^{-1}$ used here

Fraction of hadron pairs

From MC samples, we calculate the number of hadron pairs (KK, K $\boldsymbol{\pi}$ and $\boldsymbol{\pi} \boldsymbol{\pi}$) coming from light quarks and background events:

$$
F_{i}=\frac{N_{i}^{(M C)}}{N_{d a t a}}
$$

We then calculate the corrected fractions in

$$
F_{i}^{c o r r}=F_{i}+\frac{\left(1-\sum_{j=u d s}^{c c, b b, \tau} F_{j}\right) * \sigma_{i}^{2}}{\sum_{j=u d s}^{c c, b b, \tau} \sigma_{j}^{2}}
$$

Similar distribution for D^{*}-enhanced and $\pi \pi$ samples

$\pi \pi$ Collins effect: asymmetries vs. $\left(\mathrm{Z}_{1}, \mathrm{z}_{2}\right)$

PRD 90,052003 (2014)

Statistical errors shown as bars; systematic errors shown as bands

Significant nonzero A^{UL} and A^{UC} in all bins

- strong dependence on $\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right): 1-39 \%$ in RF12 and $1-11 \%$ in RF0
- $\mathrm{A}^{\mathrm{UC}}<\mathrm{A}^{\mathrm{UL}}$ as expected; complementary information about the favored and disfavored fragmentation processes (PRD 73, 094025 (2006))
- consistent with $\mathrm{z}_{1} \Leftrightarrow \mathrm{z}_{2}$ symmetry

$\pi \pi$ consistency check

Comparison of the $\pi \pi$ asymmetries with those measured in the previous BaBar analysis:
PRD 90, 052003 (2014)

* Different kinematic regions: asymmetries rescaled for $\left\langle\sin ^{2} \theta>/<1+\cos ^{2} \theta>\right.$
- Average values of the data in the new ($\mathrm{z}_{1}, \mathrm{z}_{2}$) intervals

$$
\frac{R^{U L}}{R^{L}}=1+\cos \left(\phi_{1}+\phi_{2}\right) \cdot A_{12}^{U L}=1+\cos \left(\phi_{1}+\phi_{2}\right) \cdot \frac{\left\langle\sin ^{2} \theta_{t h}\right\rangle}{\left\langle 1+\cos ^{2} \theta_{t h}\right\rangle} \cdot \frac{H_{1}^{\perp}(z) \bar{H}_{1}^{\perp}(z)}{D_{1}(z) \bar{D}_{1}(z)}
$$

- New and previous results are in good agreement each other
- we averaged those values falling in the new interval
- Cross check \Rightarrow make us confident about the goodness of the simultaneous extraction of $\mathrm{KK}, \mathrm{K} \pi$ and $\pi \pi$

$\pi \pi$ Collins effect: asymmetries vs. $\left(\mathrm{p}_{\mathrm{t} 1}, \mathrm{p}_{\mathrm{t} 2}\right)$ and $\mathrm{p}_{\mathrm{t} 0}$

- FIRST MEASUREMENT of Collins asymmetries vs. p_{t} in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation at $\mathrm{Q}^{2 \sim 110(\mathrm{GeV} / \mathrm{c})^{2}}$
- non-zero A^{UL} and A^{UC} asymmetries

$\mathbf{A}^{\mathrm{UC}}<\mathbf{A}^{\mathrm{UL}}$: complementary information on $\mathrm{H}_{1}{ }^{\perp}$, fav and $\mathrm{H}_{1}{ }^{\perp}$, dis

$\pi \pi$ Collins effect: asymmetries vs. polar angles

PRD 90,052003 (2014)

We study the angular dependence after integration over fraction energies and transverse momenta
$\mathrm{A}_{12} \propto \frac{\sin ^{2} \theta_{t h}}{1+\cos ^{2} \theta_{t h}} \cos \left(\phi_{1}+\phi_{2}\right) \frac{H_{1}^{\perp}\left(z_{1}\right) \bar{H}_{1}^{\perp}\left(z_{2}\right)}{D_{1}\left(z_{1}\right) \bar{D}_{1}\left(z_{2}\right)}$
$==>$ Intercept consistent with zero, as expected (consistent with Belle results)

$$
\mathrm{A}_{0} \propto \frac{\sin ^{2} \theta_{2}}{1+\cos ^{2} \theta_{2}} \cos \left(2 \phi_{0}\right) \mathcal{F}\left[\frac{H_{1}^{\perp}\left(z_{1}\right) \bar{H}_{1}^{\perp}\left(z_{2}\right)}{D_{1}\left(z_{1}\right) \bar{D}_{1}\left(z_{2}\right)}\right]
$$

$==>$ The linear fit gives a non-zero constant parameter (consistent with Belle results)

Lines: fit results with a linear functions Dotted lines: fit results with a linear function crossing the origin

Corrections and systematic studies

The experimental method assumes the thrust axis as $\mathrm{q} \overline{\mathrm{q}}$ direction, but this is only a rough approximation

- RF12: the azimuthal angles are calculated respect to the thrust axis \rightarrow large smearing;
- RF0: no thrust axis needed \rightarrow smearing due only to PID and tracking resolution.
\Rightarrow Using the MC sample, we introduce in the simulation several values of asymmetries, and we study the differences between the simulated and the reconstructed ones

Thrust/ $q \bar{q}$ opening angle

Same corrections applied for the three hadron pair combinations

- RF12: strong dilution observed \Rightarrow correction ranges between 1.3 to 2.3 for increasing z
- RF0: no dilution observed \Rightarrow no correction needed

