Decadimenti semileptonici charmless di adroni con beauty ad LHCb

Istituto Nazionale di Fisica Nucleare Anna Lupato on behalf of LHCb Collaboration

101° Congresso nazionale SIF Roma, 21-25 Settembre 2015

25/09/2015

1

LHCD

Misura di V_{ub}

La matrice CKM descrive l'intensità di accoppiamento tra i quark nelle interazioni di corrente carica debole

 $\rightarrow |V_{ub}|$ è uno dei parametri determinati con maggior incertezza

Discrepanza di 30 tra le misure inclusive ed esclusive

...e ad LHCb?

- enorme produzione di adroni con beauty S
- 20 % dei quali sono Λ_b $\textcircled{\odot}$
- ricostruzione tracce ed ID protoni e muone eccellenti 😊
- la presenza del neutrino non permette di ricostruire il momento della particella che decade ⊗

Strategia di analisi

Canale di decadimento: Λ_b→pµν
Canale di normalizzazione: Λ_b→ Λ_c(→ pKπ)µν

Dataset: 2 fb⁻¹

• **Osservabile:** branching ratio di $\Lambda_b \rightarrow p\mu\nu$ normalizzato rispetto a $\Lambda_b \rightarrow \Lambda_c \mu\nu$ \rightarrow cancellazione di molte incertezze sistematiche (rate di produzione di Λ_b)

$$\begin{split} R_{sperimentale} &= \frac{\mathcal{B}(\Lambda_b \to p\mu^- \bar{\nu}_\mu)_{q^2 > 15 \text{GeV}^2/\text{c}^4}}{\mathcal{B}(\Lambda_b \to \Lambda_c \mu^- \bar{\nu}_\mu)_{q^2 > 7 \text{GeV}^2/\text{c}^4}} = \\ &= \frac{N(\Lambda_b \to p\mu^- \bar{\nu}_\mu)}{N(\Lambda_b \to (\Lambda_c \to pK\pi)\mu^- \bar{\nu}_\mu)} \times \frac{\epsilon(\Lambda_b \to (\Lambda_c pK\pi)\mu^- \bar{\nu}_\mu)}{\epsilon(\Lambda_b \to p\mu^- \bar{\nu}_\mu)} \times \mathcal{B}(\Lambda_c \to pK\pi) \end{split}$$

 $con B(\Lambda_c \rightarrow pK\pi) = 6.84 \pm 0.24 \text{ (stat)}_{-0.27} + 0.21 \text{ (sist)}$ Belle Collaboration [arXiv:1312.7826]

• Misura:
$$|V_{ub}|^2 = |V_{cb}|^2 rac{R_{sperimentale}}{R_{teorico}}$$

con $R_{\text{teorico}} = 1.471 \pm 0.095(\text{stat}) \pm 0.109(\text{sist})$ [arXiv: 1503.01421]

Selezione degli eventi

• Qualità dei vertici:

- selezione μ che formano un vertice con un'altra traccia dell'evento

- fondo dominante: decadimenti di b \rightarrow c

 \rightarrow adroni charmati hanno $\tau \neq 0 \rightarrow$ richieste sulla qualità dei vertici secondari

• Tagli di PID applicati al protone • $\Lambda_b \rightarrow \Lambda_c (\rightarrow p K \pi) \mu v$:

- 2 tracce aggiuntive identificate come K e π sono combinate con un protone

Selezione degli eventi

• Selezione per alti q²:

- canali semileptonici \rightarrow neutrino non ricostruibile

- utilizzando la direzione di volo della $\Lambda_{\rm b}$
- + constraint di massa
- \rightarrow q² ricostruibile con doppia ambiguità e differente risoluzione:
 - soluzione corretta: 1 GeV²/ c^4
 - soluzione errata: $4 \text{ GeV}^2/c^4$

- $q^2 > 15 \text{ GeV}^2/c^4$ per entrambe le soluzioni per minimizzare la migrazione da bassi q^2 , regione in cui i fattori di forma hanno grosse incertezze

Selezione degli eventi

- Analisi multivariata mirata all'isolamento delle tracce:
 - Boosted Decision Tree per rimuovere i decadimenti formati da tracce cariche associate al vertice pu \overline{X}_h
 - reiezione fondo: ~90 %
 - efficienza segnale: ~80 %

• Massa corretta:

$$M_{corr}=\sqrt{p_{\perp}^2+M_{p\mu}^2}+p_{\perp}$$

segnale

dove $M_{p\mu}$ è la massa visbile e p_{\perp} il impulso trasverso alla direzione di volo

- incertezza sulla massa dominata dalla risoluzione sulla ricostruzione dei vertici

- candidati rigettati se $\sigma_{Mcorr} > 100 \text{ MeV/c}^2$ \rightarrow efficienza: ~23 % (taglio applicato soltanto a $\Lambda_b \rightarrow p\mu\nu$)
- Si individua il picco alla massa della Λ_b anche se manca un neutrino!

Fit alle distribuzioni di massa corretta M_{pµ}

25/09/2015

Efficienze relative ed errori sistematici

• Efficienze relative:

- Determinate utilizzando campioni simulati, con correzioni dai dati

$$\frac{\epsilon(\Lambda_b \to p\mu^- \bar{\nu}_\mu)}{\epsilon(\Lambda_b \to (\Lambda_c \to pK\pi)\mu^- \bar{\nu}_\mu)} = 3.52 \pm 0.20$$

- Le maggiori differenze in efficienza sono dovute a:

* le due tracce aggiuntive presenti nel canale di normalizzazione

* l'efficienza di ricostruzione del vertice della Λ_c

* il taglio sulla $\sigma_{M_{corr}}$ applicato soltanto a $\Lambda_{h} \rightarrow p \mu v$

Source F	Relative uncertainty (%)
$\mathcal{B}(\Lambda_c^+ \to pK^+\pi^-)$	$^{+4.7}_{-5.3}$
Trigger	3.2
Tracking	3.0
Λ_c^+ selection efficier	псу 3.0
N^* shapes	2.3
Λ_b^0 lifetime	1.5
Isolation	1.4
Form factor	1.0
Λ_b^0 kinematics	0.5
q^2 migration	0.4
PID	0.2
Total	+7.8

Risultati

- Rapporto dei branching ratios:
 - $\frac{B(\Lambda_b \to p \mu v_{q^2 > 15 GeV^2/c^4})}{B(\Lambda_b \to \Lambda_c \mu v)_{q^2 > 7 GeV^2/c^4}} = (1.00 \pm 0.04 (stat) \pm 0.08 (sist)) \times 10^{-2}$
- Estrapolazione a tutto l'intervallo in q²: - $B(\Lambda_b \rightarrow p \mu \nu) = (4.1 \pm 1.0) \times 10^{-4}$

(dominato dalle incertezze sui fattori di forma)

Risultati – Nuova fisica?

- Può questa discrepanza essere spiegata prevedendo una corrente destrorsa?
- Una corrente destrorsa negativa potrebbe ridurre la tensione tra i due risultati

Decay	$ V_{ub} \times 10^3$	ϵ_R dependence
$B \to \pi \ell \bar{\nu}$	3.23 ± 0.30	$1 + \epsilon_R$
$B \to X_u \ell \bar{\nu}$	4.39 ± 0.21	$\sqrt{1 + \epsilon_R^2}$
$B \to \tau \bar{\nu}_{\tau}$	4.32 ± 0.42	$1 - \epsilon_R$

$$\mathcal{L}_{eff} = -\frac{4G_F}{\sqrt{2}} V^L_{ub} (\bar{u}\gamma_\mu P_L b + \epsilon_R \bar{u}\gamma_\mu P_R b) (\bar{\nu}\gamma^\mu P_L l) + h.c$$

Conclusioni

• LHCb ha osservato il decadimento $\Lambda_b \rightarrow p\mu\nu$ e ne ha misurato il branching ratio: $B(\Lambda_b \rightarrow p\mu\nu) = (4.1 \pm 1.0) \times 10^{-4}$

• E' la prima osservazione di $|V_{ub}|$ ad un collider adronico e in un canale barionico:

 $|V_{ub}| = (3.27 \pm 0.15 (misura) \pm 0.16 (teoria) \pm 0.06 (|V_{cb}|)) \times 10^{-3}$

• Tale misura è consistente con i valori di $|V_{ub}|$ ottenuti alle B-factories nel canale B $\rightarrow \pi l v$

• Combinando la misura di LHCb e B $\rightarrow \pi$ lv la discrepanza tra misure esclusive ed inclusive risulta essere pari a 3.90

• Il problema della discrepanza tra le misure di $|V_{ub}|$ rimane aperto

– non sembra essere spiegabile con la presenza di correnti destrorse