# Search for $b\bar{b}$ resonances at CDF and LHCb

#### Emanuele Michielin

Università di Padova

101°Congresso della Societá Italiana di Fisica September 25th 2015

## The search for $b\bar{b}$ resonances

- ✓ High interest in particles decay into  $b\bar{b}$  pairs
- $\checkmark~$  Higgs boson decays predominantly in  $b\bar{b}$   $\mathcal{B}\approx57.7\%$
- ✓ Numerous extensions to the standard model predict massive particles decay into dijet resonance
  - ► Z', W', Graviton, Axigluon, SuSy
- ✓ Overwhelming backgrounds from the multijet production from QCD interactions



b

b

 $\mathfrak{m}$ 

ന്ന

## Search for MSSM Higgs Bosons

#### ✓ MSSM Higgs properties

- Three neutral scalars: h, H, A : (generically  $\phi$ )
- $tan\beta$  : ratio of down-type to up-type couplings
- At large  $tan\beta$ , decays into  $b\bar{b}$  (90%) and  $\tau\tau$  (10%) dominate



#### The 3b channel

- $\blacktriangleright$  Search for the  $bb\phi \rightarrow bbbb$  process
- ► Associated production bφ to reduce the large backgrounds
- Smaller cross section when requiring both bs to be high-p<sub>T</sub>
- Look for the Higgs + 1b case

# Identifying b jets



- $\blacktriangleright$  B hadrons travel a finite distance in the detector  $\sim$  500  $\mu m$ , a secondary vertex is formed
- Tracks from secondary vertex have large impact parameter

#### Triggering on b-jets

- Secondary vertices reconstructed on-line at trigger level
- The Silicon Vertex Trigger (SVT) is a trigger processor that combines hits from silicon detectors with tracks reconstructed in the drift chambers
- > It allows to measure the impact parameter with a resolution of  $35 \,\mu m$  for 2 GeV/c tracks
- Fast  $(O(10\mu s))$  and efficient (~ 40%) on-line b-tagging
- Key of the CDF outstanding high and low energy B-physics program

#### Search for Higgs bosons produced in association with b quarks Phys. Rev. D 85, 032005

- ✓ 3 b-Tagged jets sample, collected with a double on-line b-tagging jets trigger
- ✓ Signal: enhancement in the mass of the first 2 jet  $m_{12}$  spectrum
- ✓ Important backgrounds components are:
  - ▶ bb + b : bbb
  - ▶ bb + X : bbc, bbq
  - ▶ bX + b : bcb, bqb
  - $\checkmark\,$  MC does not give a truthful representation of the various flavors components
    - Data-driven method, starting from double-tagged events
    - x<sub>tag</sub> constructed from the invariant masses of the secondary vertices, sensitive to the flavor composition
    - Backgrounds templates are built weighting the events by the probability to tag the third jet if it were a b, c or a light-quark jet



### Fit backgrounds templates to data

 $\checkmark$  Templates are actually 2D histograms in both  $m_{12}$  and  $x_{tag}$ 

- Fit itself is also 2D
- Only show projections for clarity



| Workation                   | CDI INEES / DDD       | CDI Z 700              | Effeb bb resonances |
|-----------------------------|-----------------------|------------------------|---------------------|
|                             |                       |                        |                     |
| Results                     |                       |                        |                     |
| Analysis                    | s based on a data sam | nle corresponding to a | on integrated       |
| Iuminosity of $2.6 fb^{-1}$ |                       |                        |                     |
| 95% C.L. upper limits       |                       |                        |                     |

CDF Higgs hbb

CDE 7-bb



Max deviation from expected at 150  $GeV/c^2$ Including the trials factor,  $1 - CL_b = 2.5\% (1.9\sigma)$ Corresponds to  $\sigma \times BR \sim 15pb$ 

## Search for $b\bar{b}$ resonances in a new CDF sample

- $\checkmark\,$  Sample of data rich in b jets, still to be analyzed
- ✓ Special trigger developed for the data taking, exploiting CDF trigger upgrade



- A jet is formed starting from a seed tower in the calorimeter above a threshold (3 GeV)
- A new fixed cone cluster finding algorithm is used to reconstruct offline-like quality jets
- 3D tracks matched to one of the jets
- Two jets in the final states with low energy threshold (15 GeV) to avoid sizable bias on the dijet invariant mass distribution
- ► Only one on-line SVT b-tagged jet, smaller bias due to the on-line tagger
- ▶ 5.4 $fb^{-1}$  of integrated luminosity, plenty of  $b\bar{b}$  pairs

### Search for $b\bar{b}$ resonances in a new CDF sample

- ✓ Many physics analyses are possible:
  - $b\bar{b}$  and multi-b resonances
  - $\blacktriangleright$  Extend the  $\phi \to bbb$  search, this sample is orthogonal to the one used in the previous analysis
  - ► We can test the Standard Model with a bb̄ asymmetry measurement, particularly at the Z pole



Flavor composition of the 1 on-line and off-line b-tagged jet. About 20% of contamination from c and light quark jets

#### Jets physics at LHCb

- LHCb is an one arm forward spectrometer designed for the study of hadrons with b and c quarks
- But it is becoming more and more a general purpose experiment
- It gives access to a complementary phase space region for electroweak and jets measurements respect to ATLAS and CMS
- Some jet analyses already published



Forward W + b/c production at 7 and 8 TeV

Measurement of the Z+b-jet cross-section in pp

collisions at  $\sqrt{s} = 7$  TeV in the forward region





# bb resonances at LHCb

- $\checkmark\,$  LHCb is probably the most similar to CDF LHC experiment
- ✓ Controlled luminosity, extremely good tracking performance and particular forward acceptance
  - QCD background can be kept under control
- ✓ Idea: transfer all the technologies and skills developed at CDF, adapted to the new environment
  - First there is the need for a dedicated trigger for b-jets
    - Look for energy towers in the calorimeters to form the jet (anti-kt or cone algorithm)
    - ► Use the tracking information to search for tracks with high impact parameter →displaced vertices
    - ► High multiplicity →need for speed: GPU technologies for tracking under development



# Unique opportunity to search for low mass resonances at LHC

# Backup

12/13

# $x_{tag}$ definition

- ► m<sub>1</sub>, m<sub>2</sub> and m<sub>3</sub> mass of the secondary vertex of the first, second and third jets
- The goal is to separate the backgrounds with:
  - ▶ high m<sub>1</sub>+m<sub>2</sub> (bbB, bBb, bbC, bbQ) from those with lower m<sub>1</sub>+m<sub>2</sub> (bCb,bQb)
  - high m<sub>3</sub> (bbB, bBb, bCb, bQb) from those with lower m<sub>3</sub> (bbC, bbQ)

