

Studio di decadimenti semileptonici di adroni B in stati finali contententi leptoni tau a LHCb INFN e Università di Ferrara

ON BEHALF OF LHCB COLLABORATION

BENEDETTO SIDDI

24 settembre 2015

Studio di decadimenti semileptonici di adroni B in stati finali contententi leptoni tau a LHCb 👔 🗖

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 = < ○ < ○

B. Siddi

Decadimenti semileptonici del mesone B in stati finali con au

- L'universalità leptonica descritta nel modello standard, afferma l'uguaglianza nell'accoppiamento tra bosoni di gauge e le tre famiglie leptoniche.
- Estensioni del modello standard contengono interazioni addizionali che implicano un accoppiamento più forte con la terza generazione di leptoni.
- \bigcirc I decadimenti semileptonici in τ di adroni contenenti quark b possono essere una sonda sensibile a questo tipo di effetti di nuova fisica.
- La presenza di addizionali bosoni di Higgs carichi, richiesti spesso da questi modelli, possono avere effetti significativi nel rate dei decadimenti semitauonici $\bar{B}^0 \rightarrow D^{*+} \tau^- \bar{\nu}_{\tau}$.

B. Siddi

Studio di decadimenti semileptonici di adroni B in stati finali contententi leptoni tau a LHCb

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの(?)

INFN Ferrara

Decadimenti semileptonici del mesone B in stati finali con au

$R(D^*)$ a inizio 2015

l risultati sperimentali a inizio 2015 sono in tensione con la previsione dello SM di [Fajfer et al., 2012] in particolare, l'esperimento *BABA*R nel 2012 ha trovato una discrepanza rispetto al MS di $R(D^*)$ pari a 2.7σ

Studio di decadimenti semileptonici di adroni B in stati finali contententi leptoni tau a LHCb

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの(?)

INFN Ferrara

Decadimenti semileptonici del mesone B in stati finali con au

Decadimenti semitauonici in LHCB

In LHCb Ia quantità $R(D^*)$ è stata misurata mediante il modo di decadimento $\tau^- \rightarrow \mu^- \nu_\tau \bar{\nu}_\mu$ usando i $3fb^{-1}$ di dati raccolti dall'esperimento nel 2011 e 2012.

- Segnale e normalizzazione.
 - $B \to D^* \mu \nu$ $B \to D^* \tau \nu$
 - Background semileptonico
 - $\begin{array}{c} \circ & B \rightarrow (D^{**} \rightarrow D^*\pi)(\mu,\tau)\nu \ (B^0 \ \mathbf{e} \\ B^+) \\ \circ & B_s \rightarrow (D^{**}_s \rightarrow D^*K^0)\mu\nu \\ \circ & B \rightarrow (D^{**} \rightarrow D^*\pi\pi)\mu\nu \ (B^0 \ \mathbf{e} \ B^+) \end{array}$

- Background dovuto a catene di decadimento
 - $\circ B
 ightarrow D^*[X_c
 ightarrow \mu
 u X]Y (B^0 e B^+)$
 - $\circ B \rightarrow D^*[D_s \rightarrow au
 u]X (B^0 \in B^+)$
- \bigcirc Altre fonti di background
 - · fondo combinatorio
 - misidentificazione del muone in decadimenti adronici parzialmente ricostruiti
- \bigcirc Evento ricostruito nel sistema di riferimento in cui il B è a riposo, assumendo $\gamma \beta_{z,D^*\mu} = \gamma \beta_{z,B}$, per avere accesso alle variabili cinematiche m_{missing}^2 , E_{μ} , q^2
- Un'analisi multivariata rimuove il fondo generato da tracce cariche extra

B. Siddi

Studio di decadimenti semileptonici di adroni B in stati finali contententi leptoni tau a LHCb

Decadimenti semitauonici in LHCb

LHCb ha misurato: $R(D^*) = 0.336 \pm 0.027(\text{stat}) \pm 0.030(\text{syst})$ [Aaij et al., 2015]

Una nuova misura di Belle è stata rilasciata nel 2015 e fornisce un valore di $R(D^*) = 0.293 \pm 0.038(\text{stat.}) \pm 0.015(\text{syst.})$ [Huschle et al., 2015] La fonte maggiore di errore sistematico è dovuta alla statistica Monte Carlo relativamente povera e alla parametrizzazione dei muoni misidentificati (rispettivamente 2% e 1.6%).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの(?)

B. Siddi

Studio di decadimenti semileptonici di adroni B in stati finali contententi leptoni tau a LHCb

5 of 12

Decadimenti semitauonici in LHCb: $\bar{B}^0 \rightarrow D^{*+} \tau^- \bar{\nu}_{\tau} \operatorname{con} \tau^- \rightarrow \mu^- \nu_{\tau} \bar{\nu}_{\mu}$

$B^0 \rightarrow D^{*-} \tau^+ \nu_\tau$ con $\tau^+ \rightarrow \pi^+ \pi^- \pi^+ \bar{\nu}_\tau$

Un altro metodo per misurare $R(D^*)$ è attraverso il canale di decadimento del leptone τ in adroni con tre pioni carichi nello stato finale $(\tau^+ \rightarrow \pi^+ \pi^- \pi^+ \bar{\nu}_{\tau})$.

- Consente la ricostruzione del vertice di decadimento del τ; questo fornisce un potente strumento per la discriminazione del fondo dovuto ai decadimenti adronici del *B*.
- Si può ricostruire con buona precisione la cinematica del B e τ grazie alla presenza di un solo neutrino in ogni decadimento.
- Evita il difficile compito di discriminare gli eventi di segnale $B^0 \rightarrow D^{*-} \tau \nu_{\tau}$ quando il τ decade leptonicamente.
- Background derivante soprattutto da:

$$\stackrel{\circ}{_{\sim}} \begin{array}{l} B \rightarrow D^* 3\pi X \\ \circ \end{array} \\ B \rightarrow D^* (D_s \rightarrow 3\pi) X \end{array}$$

$$\bigcirc \quad \frac{BR(B^0 \to D^* 3\pi + N)}{BR(B^0 \to D^* \tau \nu)_{SM}} \sim 100$$

○ II fondo da decadimenti del *B* in $D^*3\pi$ è soppresso (di un fattore 10⁴) richiedendo che il vertice dei 3 pioni sia significativamente (5 σ) a valle del vertice del D^0 .

Studio di decadimenti semileptonici di adroni B in stati finali contententi leptoni tau a LHCb 🔒

INFN Ferrara

 $J \rightarrow D^{*-} \tau^+ \nu_\tau$ con $\tau^+ \rightarrow \pi^+ \pi^- \pi^+ \bar{\nu}_\tau$

$B^0 \rightarrow D^{*-} \tau^+ \nu_\tau$ con $\tau^+ \rightarrow \pi^+ \pi^- \pi^+ \bar{\nu}_\tau$

○ I fondi rimanenti sono dovuti a decadimenti del *B* in cui il vertice dei 3 pioni viene "trasportato" da un mesone con charm $(D_s, D^+ \circ D^0)$ che decade in $3\pi + X$.

$$\supset \ \frac{BR(B^0 \to D^* D_{(s)}^{(*)}; D_{(s)}^{(*)} \to 3\pi + X)}{BR(B^0 \to D^* \tau \nu)_{SM}} \sim 10$$

 Questo fondo viene soppresso andando a cercare tracce cariche o neutre aggiuntive in un cono di data apertura attorno alla direzione di volo dei tre pioni

 \odot Esempio di massa invariante in eventi in cui è stato trovato un K (blu) o un π (rosso) aggiuntivo. Gli eventi compresi in una finestra di massa $\pm 20 \text{ MeV/c}^2$ attorno alla massa del D^0 sono scartati.

イロト 不同 トイヨト イヨト 正正 ろくつ

B. Siddi

Studio di decadimenti semileptonici di adroni B in stati finali contententi leptoni tau a LHCb

INFN Ferrara

 $' \rightarrow D^{*-} \tau^+ \nu_{\tau} \operatorname{con} \tau^+ \rightarrow \pi^+ \pi^- \pi^+ \bar{\nu}_{\tau}$

Ricostruzione del decadimento $B^0 \rightarrow D^* \tau \nu$.

- In LHCb, la direzione del leptone τ (→ 3π) può essere ricostruita approssimativamente a partire dal vertice comune dei tre pioni carichi e l'intersezione della direzione del D^{*-} .
- \bigcirc Ipotizzando che i tre pioni carichi derivino dal decadimento del τ , l'impulso del leptone può essere calcolato in questo modo:

$$|\vec{p}_{\tau}| = \frac{(m_{3\pi}^2 + m_{\tau}^2)|\vec{p}_{3\pi}|\cos\theta \pm E_{3\pi}\sqrt{(m_{\tau}^2 - m_{3\pi}^2)^2 - 4m_{\tau}^2|\vec{p}_{3\pi}|^2\sin^2\theta}}{2(E_{3\pi}^2 - |\vec{p}_{3\pi}|^2\cos^2\theta)}$$

with θ : angle between τ and 3π

○ Esiste un punto cinematico dove la radice quadrata scompare, e questo punto è dato dall'angolo θ_{max} .

$$heta_{max} = rcsin\left(rac{m_{ au}^2-m_{3\pi}^2}{2m_{ au}|ec{p}_{3\pi}|}
ight)$$

○ Una volta ricostruito l'impulso del τ è possibile applicare lo stesso metodo per ricostruire il momento del B^0 di segnale e quello dovuto al fondo $D^*3\pi + \ldots$ e $D^*D^{(*)}_{(s)}$.

Studio di decadimenti semileptonici di adroni B in stati finali contententi leptoni tau a LHCb 🔒

Ricostruzione del decadimento $B^0 ightarrow D^* au u$

Ricostruzione del decadimento $B^0 \rightarrow D^* \tau \nu$.

○ Questo metodo ci consente di ricostruire l'impulso del τ e del B^0 . Questo ci permette inoltre di ricostruire il tempo di decadimento del τ e la massa del *W* virtuale.

Massa W virtuale

Figura: In nero la massa del *W* virtuale ricostruita e in blu la verità Monte Carlo.

Figura: In nero il tempo di decadimento ricostruito e in blue la verità Monte Carlo.

Pseudo-dati Monte Carlo

Per testare la nostra capacità di estrazione del segnale è stato costruito un campione Monte Carlo che fosse il più possibile simile ai dati reali.

In questo sono inclusi:

 $B^{0} \rightarrow D^{*}\tau(\rightarrow 3\pi\nu_{\tau})\bar{\nu}_{\tau}$ $B^{0} \rightarrow D^{*}\tau(\rightarrow 3\pi\pi^{0}\nu_{\tau})\bar{\nu}_{\tau}$ $B^{0} \rightarrow D^{*}\tau(\rightarrow 3\pi\pi^{0}\nu_{\tau})\bar{\nu}_{\tau}$ $B^{0} \rightarrow D^{*}D^{(*)}_{(s)}X \text{ con } D^{(*)}_{(s)} \rightarrow 3\pi X$ $H_{b} \rightarrow D^{*}3\pi X$

Il campione corrisponde a circa $2fb^{-1}$ di luminosità equivalente ai dati.

RISULTATI SUI PSEUDO-DATI

Nel fit sono presenti 4 componenti: Signale con $\tau \rightarrow 3\pi$, Segnale con $\tau \rightarrow 3\pi\pi^0$, $D^*D^{(*)}_{(s)} \in D^*3\pi$ MC inclusivo

B. Siddi

Studio di decadimenti semileptonici di adroni B in stati finali contententi leptoni tau a LHCb TH

CONCLUSIONI

- $\, \odot \,$ l decadimenti semileptonici in τ di mesoni B sono una sonda per la misura di effetti di nuova fisica.
- LHCb riesce a misurare il decadimento semileptonico $B \rightarrow D^* \tau (\rightarrow \mu \nu \nu) \nu$ con una deviazione dal modello standard pari a circa 3σ e con una precisione del 12%, paragonabile a quanto ottenuto alle B Factories;
- La combinazione di tutti i risultati su R(D) e $R(D^*)$ è a 3.9 σ dalle previsioni del modello standard;
- L'analisi in corso a LHCb con decadimenti del tau in tre pioni carichi ha un'accuratezza statistica prevista del 5%. L'obiettivo è di mantenere le sistematiche ad un livello di precisione confrontabile.

イロト 不同 トイヨト イヨト 正正 ろくろ

BACKUPS

B. Siddi

Studio di decadimenti semileptonici di adroni B in stati finali contententi leptoni tau a LHCb

гнср

Esperimento	R_D^*	R _D
BABAR	$0.332 \pm 0.024 \pm 0.018$	$0.440 \pm 0.058 \pm 0.042$
Belle	$0.293 \pm 0.038 \pm 0.015$	$0.375 \pm 0.064 \pm 0.026$
LHCb	$0.336 \pm 0.027 \pm 0.030$	-
Media	$0.322 \pm 0.018 \pm 0.012$	$0.391 \pm 0.041 \pm 0.028$
SM	0.252 ± 0.003	0.297 ± 0.017

B. Siddi

Studio di decadimenti semileptonici di adroni B in stati finali contententi leptoni tau a LHCb

B. Siddi

BDT APPROACH

Combinations of the variables coming out from the algebraic B0 momentum reconstruction:

One charged cone variables $+ \mbox{ ProbNNpi}$ of three pions:

Various neutral and charged cones info (0.3 and 0.4):

Another neutral cones + isolation:

(4月) (日) (日)

EL OQO

Studio di decadimenti semileptonici di adroni B in stati finali contententi leptoni tau a LHCb 🔒 👔

Another variables from partial reconstruction + dynamical info on pion system and B0

Studio di decadimenti semileptonici di adroni B in stati finali contententi leptoni tau a LHCb

B. Siddi

Aaij, R. et al. (2015).

Measurement of the ratio of branching fractions $\mathcal{B}(\overline{b}^0 \to D^{*+}\tau^-\overline{\nu}_{\tau})/\mathcal{B}(\overline{b}^0 \to D^{*+}\mu^-\overline{\nu}_{\mu})$. *Phys. Rev. Lett.*, 115:111803.

```
Bozek, A. et al. (2010).
```

```
Observation of B^+ \rightarrow \bar{D}^{*0} \tau^+ \nu_{\tau} and Evidence for B^+ \rightarrow \bar{D}^0 \tau^+ \nu_{\tau} at Belle.
Phys. Rev., D82:072005.
```

Fajfer, S., Kamenik, J. F., and Nisandzic, I. (2012).

On the $B \rightarrow D^* \tau \bar{\nu}_{\tau}$ Sensitivity to New Physics. *Phys. Rev.*, D85:094025.

Huschle, M. et al. (2015).

Measurement of the branching ratio of $\bar{B} \rightarrow D^{(*)}\tau^-\bar{\nu}_{\tau}$ relative to $\bar{B} \rightarrow D^{(*)}\ell^-\bar{\nu}_{\ell}$ decays with hadronic tagging at Belle.

Lees, J. P. et al. (2012).

Evidence for an excess of $\bar{B} \rightarrow D^{(*)}\tau^-\bar{\nu}_{\tau}$ decays. *Phys. Rev. Lett.*, 109:101802.

イロト 不同 トイヨト イヨト 正正 ろくつ