Non-paraxial non-diffracting beams in scale-free optics

F. Di Mei¹, D. Pierangeli¹, J. Parravicini¹, A. J. Agranat², C. Conti³, E. DelRe¹

¹Physics Department, Unversity of Rome "La Sapienza", Italy

²The Broide Center for innovative engineering and Computer Science, Hebrew University of Jerusalem, Israel

³Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche

SIF – Roma – 21st of September 2015

The Shackles of Diffraction

Diffraction-limited (details below ~ 200 nm are lost)

Fig. 6. A field of 50-nm fluorescent beads, imaged by conventional microscopy (a), conventional microscopy plus filtering (b), linear structured illumination (c), and saturated structured illumination using illumination pulses with 5.3 mJ/cm² energy density, taking into account three harmonic orders in the processing (d). Because no scanning is necessary, a wide field can be imaged simultaneously.

Super-resolution to below 50 nm (through nonlinear microscopy)

M. Gustafsson, PNAS 102, 13081 (2005)

Scale-free

propagation

nature photonics

PUBLISHED ONLINE: 19 DECEMBER 2010 | DOI: 10.1038/NPHOTON.2010.285

Scale-free optics and diffractionless waves in nanodisordered ferroelectrics

E. DelRe^{1*}, E. Spinozzi¹, A. J. Agranat² and C. Conti³

Fresnel reflection

Intensity independent

Challenge

Propagate a non-paraxial subwavelength-sized beam in a volume along macroscopic distances for imaging

Diffraction

?iffraction

• must work beyond paraxial optics

 $w \approx \lambda$

Scale-free optics across all optical scales

From HE to KGE behavior in nanodisordered ferroelectrics

Thermally-activated giant photorefraction

Diffusing room-temperature electrons

 $\overline{\mathbf{E}}_{dc} = -(k_B T/q) \nabla I/I$

$$\Delta n = -(n_0^3/2)g\epsilon_0^2\chi_{PNR}^2|\mathbf{E}_{dc}|^2$$

$$\left(\nabla^2 \mathbf{E} - (L/\lambda)^2 (|\nabla|\mathbf{E}|^2|/2|\mathbf{E}|^2)^2 \mathbf{E} + k^2 \mathbf{E} = 0\right)$$

$$L = 4\pi n_0^2 \epsilon_0 \sqrt{g} \chi_{PNR}(k_B T/q) \quad k = k_0 n_0$$

«Nonlinear» propagation equation

B. Crosignani, A. Degasperis, E. DelRe, P. Di Porto, and A.J. Agranat, PRL 82, 1664 (1999)

E. DelRe, M. Tamburrini, M. Segev, R. Della Pergola, and A.J. Agranat, PRL 83, 1954 (1999)

E. DelRe, E. Spinozzi, A.J. Agranat, and C. Conti, Nat. Photon. 5, 39-42 (2011)

C. Conti, A.J. Agranat, and E. DelRe, PR A 84, 043809 (2011)

E. DelRe and C. Conti, Scale-free optics, Springer Series in Optical Sciences 170, 207-230 (2012)

Material

Dipolar glass forming inside the KTN:Li crystal

A.A. Bokov, Z. Ye Journal of Material Science 41 31-52 (2006)

Comparing standard optics and scale-free optics

 $-\frac{\nabla^2 E}{E} + \left(\frac{L}{\lambda}\right)^2 \left(\frac{\nabla |E|^2}{2|E|^2}\right)^2 = k^2$

Observation of diffraction cancellation for nonparaxial beams in the scale-free-optics regime

F. Di Mei,^{1,2} D. Pierangeli,¹ J. Parravicini,¹ C. Conti,^{3,1} A. J. Agranat,⁴ and E. DelRe^{1,3,*}

Experiments and Results

Paraxial regime

SAPIENZA <u>Univ</u>ersità di Roma

Experiments and Results

Non-Paraxial regime

SAPIENZA Università di Roma

Experiments and Results

Time sequence of output intensity distributions

From HE to KGE behavior in nanodisordered ferroelectrics

Thermally-activated giant photorefraction

Diffusing room-temperature electrons

 $\overline{\mathbf{E}}_{dc} = -(k_B T/q) \nabla I/I$

$$\Delta n = -(n_0^3/2)g\epsilon_0^2\chi_{PNR}^2|\mathbf{E}_{dc}|^2$$

$$\left(\nabla^2 \mathbf{E} - (L/\lambda)^2 (|\nabla|\mathbf{E}|^2|/2|\mathbf{E}|^2)^2 \mathbf{E} + k^2 \mathbf{E} = 0\right)$$

$$L = 4\pi n_0^2 \epsilon_0 \sqrt{g} \chi_{PNR}(k_B T/q) \quad k = k_0 n_0$$

«Nonlinear» propagation equation

B. Crosignani, A. Degasperis, E. DelRe, P. Di Porto, and A.J. Agranat, PRL 82, 1664 (1999)

E. DelRe, M. Tamburrini, M. Segev, R. Della Pergola, and A.J. Agranat, PRL 83, 1954 (1999)

E. DelRe, E. Spinozzi, A.J. Agranat, and C. Conti, Nat. Photon. 5, 39-42 (2011)

C. Conti, A.J. Agranat, and E. DelRe, PR A 84, 043809 (2011)

E. DelRe and C. Conti, Scale-free optics, Springer Series in Optical Sciences 170, 207-230 (2012)

Idea: non-perturbative modification of wave-propagation laws

What if light had mass?

What if light had mass?

Use massive light for high resolution (non-paraxial) imaging

He
$$(
abla^2 + n^2 k_0^2)\mathbf{E} = 0$$

$$\mathbf{I}$$
Kge $(\Box - n_{\mathrm{m}}^2 k_0^2)\mathbf{E} = 0$

From HE to KGE behavior in nanodisordered ferroelectrics

Thermally-activated giant photorefraction

Diffusing room-temperature electrons

 $\overline{\mathbf{E}}_{dc} = -(k_B T/q) \nabla I/I$

$$\Delta n = -(n_0^3/2)g\epsilon_0^2\chi_{PNR}^2|\mathbf{E}_{dc}|^2$$

$$\left(\nabla^2 \mathbf{E} - (L/\lambda)^2 (|\nabla|\mathbf{E}|^2|/2|\mathbf{E}|^2)^2 \mathbf{E} + k^2 \mathbf{E} = 0\right)$$

$$L = 4\pi n_0^2 \epsilon_0 \sqrt{g} \chi_{PNR}(k_B T/q) \quad k = k_0 n_0$$

«Nonlinear» propagation equation

B. Crosignani, A. Degasperis, E. DelRe, P. Di Porto, and A.J. Agranat, PRL 82, 1664 (1999)

E. DelRe, M. Tamburrini, M. Segev, R. Della Pergola, and A.J. Agranat, PRL 83, 1954 (1999)

E. DelRe, E. Spinozzi, A.J. Agranat, and C. Conti, Nat. Photon. 5, 39-42 (2011)

C. Conti, A.J. Agranat, and E. DelRe, PR A 84, 043809 (2011)

E. DelRe and C. Conti, Scale-free optics, Springer Series in Optical Sciences 170, 207-230 (2012)

Gaussian «bubbles»

 $E \propto \exp(-r^2/w_0^2)$ $(\nabla^2 - n_m^2 k_0^2) \mathbf{E} = 0 \qquad 1 < L/\lambda < (w_0 k/\sqrt{6})$ $n_m^2(L) = n_0^2 (1 - (L/\lambda)^2 (6/k^2 w_0^2))/((L/\lambda)^2 - 1)$

Gaussian «filaments»

 $E \propto \exp\left(-r_{\perp}^{2}/w_{0}^{2}\right)B(z)$ $-\partial_{z'z'}^{2} + \nabla_{\perp}^{2}\mathbf{E} - ((L/\lambda)^{2} - 1)^{-1}(k^{2} - (L/\lambda)^{2}(4/w_{0}^{2}))\mathbf{E} = 0$ $z' \equiv z\sqrt{(L/\lambda)^{2} - 1} \qquad \Box \equiv -\partial_{z'z'}^{2} + \nabla_{\perp}^{2}$ $(\Box - n_{m}^{2}k_{0}^{2})\mathbf{E} = 0 \qquad 1 < L/\lambda < (w_{0}k/2)$ $n_{m}^{2}(L) = n_{0}^{2}(1 - (L/\lambda)^{2}(4/k^{2}w_{0}^{2}))/((L/\lambda)^{2} - 1) \qquad \Delta n \ll n_{0}$

Use massive light for high resolution (non-paraxial) imaging

$$\begin{aligned} \mathrm{HE} \qquad (\nabla^2 + n^2 k_0^2) \mathbf{E} &= 0 \\ & & \downarrow \\ \mathrm{KGE} \qquad (\Box - n_\mathrm{m}^2 k_0^2) \mathbf{E} &= 0 \\ & 1 < L/\lambda < (w_0 k/2) \\ L \qquad &= 4\pi n_0^2 \epsilon_0 \sqrt{g} \chi_{PNR} (k_B T/q) \\ & \frac{L}{\lambda} > 1 \qquad \chi_{PNR} \sim 10^4 - 10^5 \end{aligned}$$

Massive beam propagation (L> λ)

nature photonics

Subwavelength anti-diffracting beams propagating over more than 1,000 Rayleigh lengths

Eugenio DelRe^{1*}, Fabrizio Di Mei^{1,2}, Jacopo Parravicini¹, Gianbattista Parravicini³, Aharon J. Agranat⁴ and Claudio Conti^{1,5}

Massive beam propagation (L/ λ =1.1)

134 Rayleigh lengths (L_z=2.6 mm)

Subwavelength massive beam propagation (L/ λ =1.1)

0.28 micrometers...

1000 Rayleigh lengths (L_z=2.6 mm)

Anti-diffraction in the paraxial KGE regime

$$2ik\frac{\partial A}{\partial z} + \nabla_{\perp}^2 A - \frac{L^2}{\lambda^2} \left(\frac{\nabla_{\perp}|A|^2}{2|A|^2}\right)^2 A = 0$$

KGE

ΗE

$$w(z) = w_0 \sqrt{1 + \frac{4}{k^2 w_0^4}} \left[1 - \left(\frac{L^2}{\lambda^2}\right) \right] z^2 \qquad \epsilon_{\rm m} = \frac{\epsilon_r}{1 - \left(\frac{L}{\lambda}\right)^2}$$

$$z_c = (n\pi/\lambda)w_0^2[(L/\lambda)^2 - 1]^{-1/2}$$

