# Effective equations for Graphene

F. Biancalana

#### Heriot-Watt University, Edinburgh (UK) & Max Planck Institute for the Science of Light, Erlangen (DE)



SIF conference Rome, 2015



#### Graphene

- Single-layer 2D carbon-based material
- Honeycomb lattice
- Nobel 2010





#### Carbon allotropes

- Carbon allows many different shapes to be engineered
- Bucky-balls, carbon tubes, stripes, etc...
- Very important for future electronic devices





#### Graphene dispersion

$$H = -t \sum_{\langle i,j \rangle, \sigma = \uparrow,\downarrow} \left( a_{\sigma,i}^{\dagger} b_{\sigma,j} + h.c. \right) - t' \sum_{\langle \langle i,j \rangle \rangle, \sigma = \uparrow,\downarrow} \left( a_{\sigma,i}^{\dagger} a_{\sigma,j} + b_{\sigma,i}^{\dagger} b_{\sigma,j} + h.c. \right)$$



#### Graphene dispersion



#### Graphene dispersion

$$E = \pm \sqrt{\gamma_0^2 \left(1 + 4\cos^2\frac{k_y a}{2} + 4\cos\frac{k_y a}{2} \cdot \cos\frac{k_x \sqrt{3}a}{2}\right)}$$

#### <sup>0.10</sup> phene dispersion

0.15







#### ⁰.¹⁰phene dispersi<del>on</del>

 $E = \pm \sqrt{\gamma_0^2 \left(1 + 4\cos^2\frac{k_y a}{2} + 4\cos\frac{k_y a}{2} \cdot \cos\frac{k_x \sqrt{3}a}{2}\right)}$ 

Dirac-Weyl equation "charged neutrinos"

k,

0.15

0.05

0.00

300

 $\bigcirc$ 

100

 $\bigcirc$ 

 $\bigcirc$ 

Energy

200

SiO<sub>2</sub> thickness (nm)

 $\bigcirc$ 

K

 $v_F \, \vec{\sigma} \cdot \nabla \psi(\mathbf{r}) = E \psi(\mathbf{r}). \qquad v_F$ 

 $v_F\simeq 10^8~cm/s$ 

 $E = \hbar v_F \sqrt{k_x^2 + k_y^2}$ 



#### one dispersion

 $E = \pm \sqrt{\gamma_0^2 \left(1 + 4\cos^2\frac{k_y a}{2} + 4\cos\frac{k_y a}{2} \cdot \cos\frac{k_x \sqrt{3}a}{2}\right)}$ 

Dirac-Weyl equation "charged neutrinos"

0.15

0.05

0.00

300

 $\bigcirc$ 

100

 $\bigcirc$ 

 $\bigcirc$ 

Energy

200

SiO<sub>2</sub> thickness (nm)

 $\bigcirc$ 

K

 $v_F \, \vec{\sigma} \cdot \nabla \psi(\mathbf{r}) = E \psi(\mathbf{r}).$   $v_F \simeq 10^8 \, cm/s$ 

$$\hat{h} = \frac{1}{2}\boldsymbol{\sigma} \cdot \frac{\boldsymbol{p}}{|\boldsymbol{p}|} \qquad E = \hbar v_F \sqrt{k_x^2 + k_y^2}$$

$$\hat{h}\psi_{\boldsymbol{K}}(\boldsymbol{r}) = \pm \frac{1}{2}\psi_{\boldsymbol{K}}(\boldsymbol{r})$$





## Cyclotron mass

- Shubnikov-de Haas oscillations (resistivity vs magnetic field)
- Doped graphene, low temperature, high magnetic fields





### ARPES



• Angle resolved photoemission spectroscopy (ARPES)





## Graphene D.O.S.

- DOS is zero at the Dirac point and grows linearly
- Van-Hove singularities in the deep UV
- Linear dispersion works up to around 400 nm wavelength
- Matrix element (dipole moment) is the *exact inverse* of the DOS



#### Several types of fermions in CMP



#### Incredible property: universal absorption

- Linear property (low fields)
- 2.3 % of light is absorbed by ulletonly 1 layer
- layers can be seen by naked • eye
- The absorption of a single • layer is largely frec independent, and to the fine structure

#### **Fine Structure Consta** Defines Visual Transparency d

R. R. Nair,<sup>1</sup> P. Blake,<sup>1</sup> A. N. Grigorenko,<sup>1</sup> K. S. Novoselov,<sup>1</sup> T. J. Booth,<sup>1</sup> T. Stauber,<sup>2</sup> N. M. R. Peres,<sup>2</sup> A. K. Geim<sup>1</sup>\*

hene



#### Monolayer and Bilayer graphene

- Universal Quantum conductivity
- Law of universal absorption (linear)





#### Doping graphene

- Graphene can be p-doped or n-doped
- The doping shifts the Fermi level (chemical potential)



## Magnetic fields

- Magnetic fields introduce a magnetic length scale and a cyclotron frequency scale
- Dirac equation with minimal substitution

$$\ell_B = \sqrt{\frac{c}{eB}}$$
$$\omega_c = \sqrt{2} \frac{v_F}{\ell_B}$$

$$v_F[\vec{\sigma} \cdot (-i\nabla + e\mathbf{A}/c)]\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

## Magnetic fields

- Magnetic fields introduce a magnetic length scale and a cyclotron frequency scale
- Dirac equation with minimal substitution

$$\ell_B = \sqrt{\frac{c}{eB}}$$
$$\omega_c = \sqrt{2} \frac{v_F}{\ell_B}$$

$$v_F[\vec{\sigma} \cdot (-i\nabla + e\mathbf{A}/c)]\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

Free electron under magnetic field

$$\tilde{H} = \frac{(\tilde{\mathbf{p}} - e\mathbf{A}/c)^2}{2m}$$

Energy and orbit are quantized:

$$\varepsilon_n = \hbar w_c (n + 1/2), \qquad w_c = eB/mc$$

Each Landau orbit contains magnetic flux quanta

$$\phi_0 = \frac{hc}{e}$$

$$\ell_B = \sqrt{\hbar/eB}$$



## Hofstadter butterfly

- Predicted by the cognitive scientist Douglas Hofstadter
- Chemical potential vs magnetic field
- Different colours are different integers in the quantum Hall conductance
- Warm colours are positive integers, cold colours are negative integers
- Fractal structure





## Klein paradox

- Predicted by O. Klein by using the Dirac equation
- When a potential barrier is very large, the transmitted wave function is nearly one ?!?
- The electron is transmitted as a hole in the barrier





### Non-resistive electronics

- PN junctions in ordinary diodes and transistors are non-transparent for incident electrons, therefore they are highly resistive
- Klein paradox makes the junction very transparent !





### Graphene surface states

- Surface states exist when edges appear and translational symmetry is broken
- Important for the field of topological insulators





#### Stronger than steel



- 10 times stronger than steel
- Microbullets fired at a layer
- strength tested with mechanical tips



10 µm

#### Graphene solar cells

- graphene is a "transparent conductor"
- ideal for solar cells
- silicon cells efficiency is around 30%
- graphene-silicon cells could reach a 60% efficiency



#### Graphene light bulbs

- Last 10% longer than LEDs
- On sale this year (expect a Christmas present)

![](_page_25_Picture_3.jpeg)

#### Graphene aerogel

- The lightest solid material in existence
- Made of graphene and carbon nanotubes
- Seven times lighter than air

![](_page_26_Picture_4.jpeg)

#### Flexible graphene displays

 Samsung is developing some secret projects

![](_page_27_Picture_2.jpeg)

![](_page_27_Picture_3.jpeg)

#### Vantablack

- Darkest material, absorbs 99.965 % of light in the visible
- Made of grown carbon nanotubes
- Light is continuously deflected and converted into heat, and is never reflected
- Will be used in telescopes to increase their sensitivity to faint stars

![](_page_28_Picture_5.jpeg)

#### Electronic DNA sequencing

- Electrical detection of single DNA molecules
- Electric fields push DNA down a hole
- Ultimately (they say in 2030), it will be possible to sequencing DNA electronically

![](_page_29_Picture_4.jpeg)

## Graphene spiders

- Spiders sprayed with graphene produce super-strong silk
- A web made like this can catch a falling plane
- Candidate for the Ig-Nobel prize ?

![](_page_30_Picture_4.jpeg)

#### Graphene 2D ice

- Square ice in a graphene sandwich
- Graphene ice cream?

![](_page_31_Figure_3.jpeg)

![](_page_31_Picture_4.jpeg)

![](_page_31_Picture_5.jpeg)

#### Casimir effect in graphene

- In presence of a magnetic field, graphene layers can attract or repel each other, depending on the doping
- The force is quantised due to the quantised Hall effect
- Casimir force can be canceled by balancing doping and magnetic field. Important for quantum gravity!

![](_page_32_Picture_4.jpeg)

#### Graphene optical modulators

• Adjusting the Fermi energy to modulate light electrically

![](_page_33_Figure_2.jpeg)

![](_page_33_Picture_3.jpeg)

#### Saturable absorption

• Used in cavities to create trains of very short pulses

![](_page_34_Figure_2.jpeg)

#### Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers

By Qiaoliang Bao, Han Zhang, Yu Wang, Zhenhua Ni, Yongli Yan, Ze Xiang Shen, Kian Ping Loh,\* and Ding Yuan Tang\* Conical dispersion of graphene gives a strong optical nonlinearity !

#### Mikhailov, 2009-2015

![](_page_35_Figure_3.jpeg)

#### Higher harmonics generation $\omega \Rightarrow m\omega$

Nonlinearity in graphene should be seen at much lower electric fields than in many other materials

#### Graphene current

- Graphene current is strongly nonlinear
- Sinusoidal excitation

![](_page_36_Figure_3.jpeg)

$$\frac{\partial f_{\mathbf{p}}(\mathbf{r},t)}{\partial t} + \mathbf{v}_{\mathbf{p}} \frac{\partial f_{\mathbf{p}}(\mathbf{r},t)}{\partial \mathbf{r}} + \mathbf{F}(\mathbf{r},t) \frac{\partial f_{\mathbf{p}}(\mathbf{r},t)}{\partial \mathbf{p}} = 0$$

#### Doping controls the nonlinearity

Typical nonlinear electric field?

$$egin{aligned} & v_X = v_F rac{p_X}{\sqrt{p_X^2 + p_y^2}}, & -p_F \lesssim p_y \lesssim p_F, & p_F = \hbar \sqrt{\pi n_S} \ & \Rightarrow rac{v_X}{v_F} = rac{p_X(t)}{|p_y|} \left(1 - rac{p_X^2(t)}{2|p_y^2|}
ight) \sim rac{p_X(t)}{p_F} \left(1 - rac{p_X^2(t)}{2|p_F^2|}
ight) \end{aligned}$$

Dimensionless electric field parameter in graphene

$$\mathcal{E}_{gr} \simeq rac{oldsymbol{e} E}{oldsymbol{p}_{F} | \omega + oldsymbol{i} \gamma |}$$

if  $\omega \gtrsim \gamma$ ,  $f \simeq 1$  THz and  $n_s \simeq 10^{11}$  cm<sup>-2</sup>, then  $\mathcal{E}_{gr} \simeq 1$  if

 $E \simeq 2 \times 10^3 \, \mathrm{V/cm}$ 

Mikhailov, 2009-2015

#### Comparison with plasma nonlinearity

• Graphene:

$$\mathcal{E}_{gr} \simeq rac{eE}{p_F |\omega + i\gamma|}$$

 $E_{typical} \simeq 2 \times 10^3 ~{
m V/cm}$ 

Conventional 3D plasma:

$$\mathcal{E}_{par} \simeq rac{e E}{mc |\omega + i\gamma|} \qquad E_{typical} \simeq 10^8 ~\mathrm{V/cm}$$

- Five orders of magnitude difference!
- 2nd and 3rd order effects  $\propto {\cal E}^2$  and  ${\cal E}^3 \Rightarrow$

#### Ten – fifteen orders of magnitude difference!

#### Four-wave mixing in graphene

#### Hendry et al, PRL'10

![](_page_39_Figure_2.jpeg)

#### Four-wave mixing in graphene

![](_page_40_Picture_1.jpeg)

Nonlinear susceptibility  $\chi^{(3)}_{graphene}$ :

 $\chi^{(3)}_{gr} \simeq 10^{-7} \text{ esu}$ 

- eight orders larger than in insulators
- $\circ$   $\sim$  10 times larger than in gold
- about four orders larger than in InSb

Hendry, Mikhailov 2010

#### High-harmonic generation

- THz pulse excitation
- Many high harmonics are observed in simulations
- Currently no experiments in the THz regime

![](_page_41_Figure_4.jpeg)

$$\chi_{\rm gr}^{(3)} = e^4 v_{\rm F}^2 / (8\pi\epsilon_0\hbar^2\omega^4\epsilon_{\rm F}d) \sim 10^8 \div 10^{14} \chi_{\rm silica}^{(3)}$$

Biancalana-Conti, J. Phys. B 2013 Ishikawa 2012

### Graphene metamaterials

![](_page_42_Figure_1.jpeg)

![](_page_42_Figure_2.jpeg)

![](_page_42_Figure_3.jpeg)

$$i\hbar\partial_t\psi_p = v_{\rm F} \left[ \begin{array}{c} 0 & \left(p_x + \frac{e}{c}A\right) - ip_y \\ \left(p_x + \frac{e}{c}A\right) + ip_y & 0 \end{array} \right] \psi_p$$
$$J_{\rm 2D}(A) = -\frac{eg_{\rm s}g_{\rm v}v_{\rm F}}{(2\pi\hbar)^2} \frac{2|p_{\rm F} + eA|}{3eA} \left\{ (p_{\rm F}^2 + e^2A^2)\mathcal{E}_+ \left(\frac{4eAp_{\rm F}}{(p_{\rm F} + eA)^2}\right) - (p_{\rm F} - eA)^2\mathcal{E}_- \left(\frac{4eAp_{\rm F}}{(p_{\rm F} + eA)^2}\right) \right\}$$

$$\left\{ \left(\frac{\epsilon_{\rm s}\omega^2}{c^2} - k_0^2\right) + \left(\partial_x^2 + \partial_y^2\right) + 2ik_0\partial_z \right\} \phi + \left[\frac{-e^2\epsilon_{\rm F}}{\pi\epsilon_0\hbar^2c^2d}\right] j_{\rm 2D}(\phi)c_0 = 0$$

Biancalana-Conti, J. Phys. B 2013

## Theoretical models

 Semiconductor Bloch equations adapted to the conical dispersion

Knorr, Malic, Koch

$$\begin{split} \dot{p}_{k}(t) &= \left(i\Delta\omega_{k} + \Omega_{k}\right)p_{k}(t) - i\Omega_{k}^{\mathrm{vc}}\left[\rho_{k}^{\mathrm{c}}(t) - \rho_{k}^{\mathrm{v}}(t)\right] + \dot{p}_{k}(t)\big|_{\mathrm{HF+s}} \\ \dot{\rho}_{k}^{\mathrm{v}}(t) &= -2\operatorname{Im}\left[\Omega_{k}^{\mathrm{vc},*}p_{k}(t)\right] + \dot{\rho}_{k}^{\mathrm{v}}(t)\big|_{\mathrm{HF+s}} , \\ \dot{n}_{q}^{j}(t) &= -\gamma_{j}\left[n_{q}^{j}(t) - n_{\mathrm{B}}\right] + \dot{n}_{q}^{j}(t)\Big|_{\mathrm{S}} .\end{split}$$

![](_page_43_Picture_4.jpeg)

- Collection of two-level systems, coupled by the Coulomb interactions
- Time-consuming but allegedly precise

#### Relaxation times

- Relaxation times vary enormously depending on the substrate or the suspension
- There is a strong electronic interaction with the substrate

![](_page_44_Figure_3.jpeg)

### Ishikawa's equations

#### Ishikawa 2012

$$i\hbar\frac{\partial}{\partial t}\psi = v_F \begin{pmatrix} 0 & pe^{-i\phi} + eA(t) \\ pe^{i\phi} + eA(t) & 0 \end{pmatrix}\psi$$

$$\dot{\rho} = -\frac{\dot{i}}{2}\dot{\theta}(t)n(t)\,\mathrm{e}^{2\mathrm{i}\Omega(t)},$$

$$\dot{n} = -\mathrm{i}\,\dot{\theta}(t)\rho(t)\,\mathrm{e}^{-2\mathrm{i}\Omega(t)} + \mathrm{c.c.}$$

$$\Omega(t) = \frac{v_F}{\hbar} \int \sqrt{[p_{\lambda} + eA(t)]^2 + p_v^2} dt$$

$$\dot{\theta}(t) = \frac{p_y eE(t)}{[p_x + eA(t)]^2 + p_y^2}$$

![](_page_45_Figure_7.jpeg)

No Coulomb interactions are accounted for

$$\mathbf{J}(t) = -\frac{g_s g_v e}{(2\pi\hbar)^2} \int \mathbf{j}_{\mathbf{c}}(t) d\mathbf{p}$$

### Ishikawa's equations

#### Biancalana 2015

$$i\hbar\frac{\partial}{\partial t}\psi = v_F \begin{pmatrix} 0 & pe^{-i\phi} + eA(t) \\ pe^{i\phi} + eA(t) & 0 \end{pmatrix}\psi$$

$$\dot{\rho} = -\frac{\dot{i}}{2}\dot{\theta}(t)n(t)\,\mathrm{e}^{2\mathrm{i}\Omega(t)},$$

$$\dot{n} = -\mathrm{i}\,\dot{\theta}(t)\rho(t)\,\mathrm{e}^{-2\mathrm{i}\Omega(t)} + \mathrm{c.c.}$$

$$\Omega(t) = \frac{v_F}{\hbar} \int \sqrt{[p_x + eA(t)]^2 + p_v^2} dt$$

$$\dot{\theta}(t) = \frac{p_y eE(t)}{[p_x + eA(t)]^2 + p_y^2}$$

- SBEs are not adequate to describe short pulses interacting with graphene
- Even long pulses "feel" the Dirac point
- The differences are very often dramatic

#### Coulomb interactions in graphene ?!

- Coulomb interactions should spoil the law of universal absorption
- Several works predict the renormalisation of the Fermi velocity near the Dirac point, when doping is present

![](_page_47_Figure_3.jpeg)

![](_page_47_Figure_4.jpeg)

#### PHYSICAL REVIEW LETTERS

![](_page_47_Figure_6.jpeg)

week ending 5 SEPTEMBER 2014

#### Why Does Graphene Behave as a Weakly Interacting System?

Johannes Hofmann,<sup>\*</sup> Edwin Barnes, and S. Das Sarma Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA (Received 6 June 2014; published 5 September 2014)

#### Z-scan measurements (Heriot-Watt)

![](_page_48_Figure_1.jpeg)

-1.0

0.5

1.0

1.5

Wavelength  $[\mu m]$ 

2.0

2.5

![](_page_48_Figure_2.jpeg)

#### Sound waves in graphene

- Transverse and Flexural phonons = 3 branches like in 3D
- Described by General Relativity !!
- Can graphene phonons be described by 2D quantum gravity?

![](_page_49_Figure_4.jpeg)

M. Vozmediano

## Curvature in graphene

Physical origin of the curvature

- Elastic fluctuations (very unlikely).
- Interaction with the substrate -observed, but ripples are also observed in suspended samples-.
- Topological defects. The only way to introduce curvature in 2D.

Present in previous graphene-like structures (nanotubes, fullerenes and bombarded graphite).

## Topological defects

#### Topological defects

![](_page_51_Picture_2.jpeg)

![](_page_51_Picture_3.jpeg)

Pentagon: induces positive curvature

![](_page_51_Picture_5.jpeg)

![](_page_51_Picture_6.jpeg)

Heptagon: induces negative curvature

![](_page_51_Figure_8.jpeg)

The most common defects in nanotubes are made by pentagons, heptagons, and pairs of them (Stone-Wales defects)

Topological defects are formed by replacing a hexagon by a n-sided polygon

#### Images: C. Ewels

**NEGATIVE CURVATURE** 

The combination of a pentagon and an heptagon at short distances can be seen as a dislocation of the lattice.

## Observation of topological defects in graphene

![](_page_52_Figure_1.jpeg)

#### Direct evidence for atomic defects in graphene layers

Ayako Hashimoto<sup>1</sup>, Kazu Suenaga<sup>1</sup>, Alexandre Gloter<sup>1,2</sup>, Koki Urita<sup>1,3</sup> & Sumio lijima<sup>1</sup> Nature 430 (2004)

model of the pentagon-heptagon pair in the graphitic network. d, A simulated HR-TEM image shows a good comparison with the HR-TEM image showin in b. Scale bar, 2 nm.

In situ of defect formation in single graphene layers by high-resolution TEM.

Defects must be present in all graphene samples and have a strong influence on the electronic properties

> Vacancies Ad-atoms Edges Topological defects

![](_page_52_Figure_8.jpeg)

### Fermions in curved space

#### Dirac in curved space

We can include curvature effects by coupling the Dirac equation to a curved space

![](_page_53_Picture_3.jpeg)

$$\gamma^{a} e^{\mu}_{a} \left( \partial_{\mu} - \Omega_{\mu}(x) \right) \psi = E \Psi$$

Need a metric and a "tetrad".

$$e^a_\mu e^b_\nu \eta_{ab} = g_{\mu\nu}$$

Generate r-dependent Dirac matrices and an effective "gauge" field.

$$\Omega_{\mu} = \frac{1}{4} \gamma^a \gamma^b e^{\nu}_{a;\mu} e_{b\nu}$$

#### Modeling ripples in flat samples with topological defetcs

![](_page_54_Figure_1.jpeg)

![](_page_54_Picture_2.jpeg)

![](_page_54_Picture_3.jpeg)

Use an equal number of 5 and 7 rings

## Photonic graphene

- Arrays of waveguides arranged with the honeycomb structure
- Mechanical strain can be applied

1 11 1 1

ß

![](_page_55_Figure_3.jpeg)

## Artificial magnetic fields

• Strain-induced artificial gauge fields - and Landau levels

![](_page_56_Figure_2.jpeg)

## Edge states

![](_page_57_Figure_1.jpeg)

A. Szameit

## Conclusions

- Graphene has potentially important practical applications
- Test-bed for QFT, particle physics, gravity, biophysics and who knows what else
- Interesting nonlinear optical properties, solitons, highharmonic generation and fourwave mixing

![](_page_58_Figure_4.jpeg)