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(r-PWFA) experiment at SPARC_LAB
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Resonant Plasma Wakefield Acceleration
se—lus (r-PWFA) experiment at SPARC_LAB

. Atrain of 3 driver electron bunches excites a wakefield
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- Stark Broadening mechanism

Light emitted by plasma allows to reconstruct the electron density from spectroscopy on
emission line broadening due to Stark-Lo Surdo effect.

H6 Hy  HB Ha

lonized Hydrogen emits in visible range four
lines of the Balmer series. The broaden of
these lines depends on many mechanisms:
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Simulated for n, = 2x10® cm-3

neglected.

I.H.Hutchinson, Principles of Plasma Diagnostics, Cambridge University Press 2002
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ety Experimental Setup

Set of 5 capillaries with 500um diameter.

Nd:Yag laser g (P

10ns pulse e
30mJ
1064nm

Electrodes

All capillaries are connected in parallel to the
discharge circuit but only the one triggered by
the laser produces plasma.

LASER-TRIGGER ABLATIVE CAPILLARIES

A voltage of 6.3kV between the two ends of the
plastic capillary is applied. A short laser pulse is
focused at the entrance from the cathode
generating a small amount of plasma that due to
an avalanche-like effect triggers the discharge.

The tapering of the capillary allows
to change the electron density along
the capillary!




E :
" xperimental Setup

Capillary i Discharge
— - circuit

The self-emitted light after the discharge is then
collected by an imaging system and sent to an
imaging spectrometer.
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Example of spectrometer output

The light emitted from the capillary is imaged on
spectrometer slit.
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Analisys: image processing

The image acquired from the exit of the spectrometer is binned and the background
(previously acquired) is subtracted.
Spatial references allow to determine the longitudinal dimension.
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" Analisys: fit and interpolation

Each row is fitted with a Lorentzian function (next implementation is for Voigt
function). The FWHM is then measured.

For each position is then possible to reconstruct the plasma density.
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Analisys: results

The error bars show the variation around the mean value if more than one image has

been acquired.

Density in tapered capillary
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The results are fitted
with a polynomial
function of the third
order

The density variation caused by the tapering was detected.

Data were averaged over 9 shots



Conclusions and future perspective
—— persp Ve

* Build new setup of for online measurementsin | &
SPARC_LAB bunker :

Window for
diagnostics

e Test the new setup with H2 gas-filled capillary  Experimental chamber
for r-PWFA experiment

Electrode

Electrode

4

Gas inlet

Gas-filled capillary prototype

 Measure density variation for different tapering of
the ablative capillaries for future |mplementat|on
in the SPARC_LAB bunker
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ety Examples of broadening

Ho, A=656,3nm H[3, A=486,1nm
Expected Expected

broadening broadening
FWHM (nm) FWHM (nm)

1*1016 0,250 1*10% 1,000

5*%1016 0,733 5*%1016 2,994

1*10Y/ 1,163 1*10%7 4,800

5*10%7 3,402 5*10Y/ 14,367

Doppler broadening 4eV 0,1008nm Doppler broadening 4eV 0,0745nm

I.H.Hutchinson, Principles of Plasma Diagnostics, Cambridge University Press 2002
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ety SPARC_LAB bunker
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