

Legacy from Run-1

Run-1 data taking completed in Feb. 2013

- Excellence performance of LHC machine and ATLAS detector
- Data collected: ~ 5fb⁻¹ at 7 TeV, ~ 20fb⁻¹ at 8 TeV
- Data-analysis still on-going

• 465 publications to date

- Higgs boson observation and main properties measured
- 198 measurement papers
- 232 (null) search result papers
- 26 papers on performance of detector, reconstruction and simulation

Many ATLAS+CMS combined physics results, e.g.

- March 2015 : Higgs Mass
 - measured with <0.2% precision
- September 2015: Higgs Couplings
 - sensitivity improved by almost $\sqrt{2}$

ATLAS and CMS combined Higgs Mass

ATLAS and CMS decay signal strengths

LHC Run-2

LHC machine

- Large increase in cross sections due to \sqrt{s} increase from 8 to 13 TeV
 - Max Luminosity : **1.3x10³⁴ cm⁻² s⁻¹**
 - More than 100 pb⁻¹ by end of 2018
- Priority for 2015 run
 - Establish proton-proton collision at 13 TeV with 25 ns and *low* β * (from 80 to 60 or 40) to prepare production runs in 2016-2018. $\sigma^* \propto \sqrt{\beta^*}$

ATLAS experiment

- Search for new Physics Beyond Standard Model
 - Excellent discovery potential
- SM Precision measurements at 13 TeV
 - Higgs, top, W/Z, B, ...
- Study of rare processes
 - ttH, 4-top, VBS, ...

A factor 10 to 50 higher luminosity for 2< M_x< 3 TeV

Physics Potential for Run2

ATLAS Upgrade during LS1

Insertable B-Layer (IBL), 4th silicon pixel detector layer

- 2 cm x 2 cm FE-I4 Pixel Chip, 130 nm CMOS process
- Innermost Pixel detector layer at R=3.3 cm from the beam
- Improves b-tagging performance

Trigger improvements

- New Topological L1 trigger,
- new central trigger processor,
- restructuring of high-level trigger, new Fast TracK Trigger (FTK)

Software

 Many improvements to simulation, reconstruction, analysis software

Overall detector consolidation

- Muon chambers completion (| η |=1.1-1.3) and repairs
- improved readout of various systems, (L1 rate up to 100 kHz)
- repair of pixel modules and calorimeter electronics
- new pixel services, new luminosity detectors, new MBTS detector

LHC schedule in 2015

Scrubbing for 25 ns

First collisions with stable beam: June 3th

	operation															
	July						Aug					Sep	Sep			
_	Wk	27	28	29	30	31	3	32	33	34	35	36	37	38	39	
- [Мо	29	6	13	20	27		3	10	17	WP24	31	7	14	21	
	Tu						¥				Ne Ne				\bigcirc	
- [We	Leap second 1	Intensity		MD 1							TS2			Ŭ	
- [Th			ramp-up ns beam					Intensity with 25	ramp-up ns beam			Jeune G			
- [Fr										MD 2					
	Sa					1										
- [Su		1						T T							
50 ns bunch spacing25 ns bunch spacing																
22/9/15 SIF2015 / A.Di Ciaccio University of Roma Tor Vergata and INFN										6						

Run-2 Data taking

- Integrated luminosity recorded: 0.86 fb⁻¹, L_{max}=2.7x10³³cm⁻²s⁻¹
- Average Pileup: μ ≅20 for 50ns, μ ≅17 for 25ns
 - Special runs taken with low pileup $(\mu <<1)$ for soft QCD studies
- Data taking efficiency: ~90%
 - 93.3% of recorded data good for physics analyses

ATLAS pp run: June-July 2015										
Inne	Inner Tracker Calorimeters Muon Spectrometer Magnets									
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
97.3	99.6	100	98.4	100	100	100	100	100	100	99.3
All good for physics: 93.3%										

Luminosity weighted relative detector uptime (in percent) and good quality data delivery during 2015 stable beams in pp collisions at $\sqrt{s} = 13$ TeV between 3 June and 16 July – corresponding to 91 pb⁻¹ of recorded data.

22/9/15

SIF2015 / A.Di Ciaccio University of Roma Tor Vergata and INFN

Outlook for the rest of 2015 and beyond

	Nc	Beta *	ppb	EmitN	Lumi [cm ⁻² s ⁻¹]	Days (approx)	Int lumi	Pileup		Peak lumi E34 cm ⁻² s ⁻¹	Days proton physics	Approx. int Iumi [fb⁻¹]
								rneup	2015	~0.5	65	3
50 ns	476	80	1.1e11	1.8	1.6e33	14	0.1 fb ⁻¹	27	2016	1.2	160	30
2015.1	1200	80	1.2e11	3.5	3.6e33	50	~2.3 fb ⁻¹	21	2017	1.5	160	36
2013.1	1200	00	1.2011	5.5	5.0655	50	2.3 10	21	2018	1.5	160	36
2015.2	1200	60	1.2e11	2.3	5.6e33	47	~3.4 fb ⁻¹	33				

Latest news: Intensity ramp up with 25 ns bunch spacing

- 1033 bunches per beam, 144 bunch trains
- Bunch populations 1.0-1.1 x 10¹¹
- Now progress in smaller steps

Run-2 Detector and Object Performance

New pixel layer (IBL)

Tracking and vertexing performance

Electron identification efficiency

PLOTS-EGAM-2015-003

- Z's and J/psi's used to evaluate electron energy scale
 - Mean and resolution already well understood
- Electron identification
 - Based on many variables combined in a likelihood (shower shape, track properties,etc)
- Electron efficiencies between 75% and 95%
 - Three different identification criteria defined: loose, medium and tight
 - Differences between data and MC corrected by in-situ calibration

Muon performance

ATL-PHYS-PUB-2015-037

SIF2015 / A.Di Ciaccio University of Roma Tor Vergata and INFN

Run Number: 271298, Event Number: 78224729

Date: 2015-07-10 20:50:34 CEST

Inelastic pp Cross Section at 13 TeV

- Inelastic cross section measured at 13 TeV
 - using just 63 μ b⁻¹ of data (recorded in low luminosity running period)
- New MBTS detectors installed during shutdown
 - Trigger on one MBTS
 - 2cm thick discs of highly efficient polystrene scintillators mounted at z=±3.6 m
 - Pseudorapidity range: 2.07<| η |<3.86</p>

ATLAS-CONF-2015-038

Minimum Bias charged particle differential cross-section

ATLAS-CONF-2015-028

- Event selection:
 - Triggered by MBTS trigger (ε >99%)
 - Requirements:
 - \geq 1 track with p_T>0.5 GeV and | η |<2.5, Vertex (\geq 2 tracks with p_T>0.1 GeV)

- Measurements compared to variety of MC models
 - These MC are used to model pileup pp interaction
- Pythia tunes and EPOS in better agreement with the data

SIF2015 / A.Di Ciaccio University of Roma Tor Vergata and INFN

Multiplicity in Minimum Bias Events

ATLAS-CONF-2015-028

Charged particle multiplicity for $p_T > 0.5$ GeV at $\eta = 0$ versus \sqrt{s}

Large-range Correlations

- Dedicated high multiplicity trigger > 60 tracks
- Define correlation function between any two particles a and b

- High N_{ch} events show correlations at large $\Delta \eta$ and $\Delta \phi$ =0
- Observe "ridge" opposite to jet peak
- Effect present strongly in p-A and A-A collisions
 - First observed on p-p collisions by CMS at $\sqrt{s}\text{=7}~\text{TeV}$

The Ridge at 13 TeV pp collisions

• Studied integrated yield for for 2<| $\Delta \eta$ |<5

$$Y(\Delta\phi) = \left(\frac{\int B(\Delta\phi) d\Delta\phi}{N^a \int d\Delta\phi}\right) C(\Delta\phi)$$

- Relative strength of "ridge "
 - Same N(trk) dependence as at 7 TeV and 13 TeV
 - consistent with CMS

Inclusive jet cross-section

- Jets reconstructed with anti- k_T algorithm, R=0.4, |y|<0.5
- Cross section measured using only 78 pb⁻¹
 - Largest uncertainty: luminosity (+-9%)
 - Good agreement with fixed-order NLO calculation and several PDFs

Wand Z ATLAS EXPERIMENT

> Run: 267638 Event: 242090708 2015-06-14 01:01:14 CEST

Ζ→μμ

A

W and Z boson measurements

Selection:

- Isolated electron or muon: p_T>25 GeV
- W bosons: E_T^{miss}> 25 GeV, m_T>50 GeV
- Z bosons: Require two opposite-charge leptons 66 GeV<m(II)<116 GeV

- About 1 million W candidates selected and 100k Z candidates
- Measured: fiducial cross section and total cross section

Inclusive W and Z Cross Sections

22/9/15

SIF2015 / A.Di Ciaccio University of Roma Tor Vergata and INFN

Dependence of σ (W) and σ (Z) on \sqrt{s}

 Cross sections increase by factor ~2 for both W's and Z's compared to 7 TeV

Top Quark Production

Run: 267638 Event: 193690558 2015-06-13 23:52:26 CEST

22/9/15

SIF2015 / A.Di Ciaccio University of Roma Tor Vergata and INFN

Top cross section: dilepton channel

Top cross section (e \mu channel) vs \sqrt{s}

- Large increase of cross section as expected
 - σ(13 TeV)/σ(8 TeV)≈3.4 and σ(13 TeV)/σ(7 TeV)≈4.5

Top cross section: single lepton, dilepton(e μ , μ μ , ee

ATLAS-CONF-2015-049

ATLAS measurements at 7, 8 and 13 TeV in agreement with NNLO+NNLL calculations

Event: 531676916 2015-08-22 04:20:10 CEST Highest-mass dijet event and the highest ${\rm H}_{\rm T}$ event at 13TeV

Mjj= 5.2 TeV P_{T}^{jet1} =2.5 TeV, P_{T}^{jet2} =2.4TeV

High-mass searches

New phenomena in di-jet search

Interpretation in a model of extra-dimensions and QBH

ATLAS-CONF-2015-042

22	9/1	5

Multi-jet search for thermalizing QBH

Non resonant search

ATLAS-CONF-2015-043

- − N_{iet}≥3, P_T>50 GeV
- Look for an excess in H_T (HT scalar sum of pT of all jets of pT>50 GeV), H_T >1TeV
 - Data-driven background fits in control region (CR)
 - Check in validation (VR)
 - Compared to events in signal region (SR)

No significant deviations observed in any signal region

- Set 95% CL limits on models of low scale gravity (n=6) using CHARYBDIS2 Model
- Improvement of 2-2.5 TeV on exclusion limit with respect to Run-1 result

22/9/15

Many New Physics Searches on going...

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Summer2015-13TeV SIF2015 / A.Di Ciaccio University of

Roma Tor Vergata and INFN

Conclusions and Outlook

- ATLAS has successful start datataking at Run-2 and commissioned all its sub-detectors.
 - Re-establishing understanding of high momentum objects
 - Fundamental keys for the future precision measurements
- First results on several SM processes and searches at 13 TeV with <100pb⁻¹
 - SM precision measurements important to understand background for searches of new physics
- ATLAS is fully ready for possible new discoveries and to perform precision physics at 13 TeV!

→ Stay tune, the best has still to come..

• Could find evidence(3 σ) for gluino mass up to ~1.5 GeV already with 5 fb⁻¹

Resonances decaying to VV

