↓ → - → - 1 HVR - CCPD Pixel detectors in BCD technology

Stefano Passadore, Attilio Andreazza, Mauro Citterio, Giovanni Darbo, Valentino Liberali, Francesco Ragusa, Ettore Ruscino, Hitesh Shrimali

> Università degli Studi di Milano and INFN - Sezione di Milano Via Celoria, 16 — 20133 Milano — Italy

> > stefano.passadore@studenti.unimi.it

September 25, 2015

The **HVR-CCPD** (High Voltage and Resistivity - Capacitively Coupled Pixel Detector) INFN project develops innovative pixel detector for **ATLAS** next upgrade in **BCD** (Bipolar-CMOS-DMOS) technology. BCD8sP technology is provided by STMicroelectronics (Agrate Brianza).

Targeting the 2024 High Luminosity LHC upgrade:

- instantaneous luminosity 5×10^{34} cm⁻²s⁻¹ (five times original ATLAS design)
- Radiation hardness up to 1 Grad (10 MGy) for the detectors nearest to the beam line (3 cm)

Why BCD technology?

Monolithic pixel sensors

• veffective cost (IC standard technology)

• K charge collection \rightarrow diffusion

- radiation damage
- small readout speed

Why BCD technology?

HV-CMOS Hybrid pixel in BCD technology

cheap (BCD technology + Capacitive Coupling + IC standard technology)
 charge collection → drift

Hybridization at INFN Genova

Capacitative Coupling: cheaper and easier alignment than Resistive Coupling.

Pillars:

used to separate uniformly the two wafers
 obtained with photoresist using lithography process

Photoresist thickness depends on the spin speed of the wafer in the deposition process

Hybridization at INFN Genova

Hybridization tests are in progress. (in picture: HV2FE-I4)

Targets for validation of BCD technology:

• MOSFET performance does NOT depend on substrate voltage

RADIATION HARDNESS

- electronic devices
- sensor

BCD Technology

KC01 is a standard test chip provided by STMicroelectronics.

```
Each row contains MOS transistors with different working voltage (1.8 V/5 V), type (NMOS/PMOS), geometry (linear/ELT) and size (W/L=10 \ \mu m/10 \ \mu m, 10 \mu m/1 \ \mu m, 20 \mu m/1 \ \mu m, 40 \mu m/1 \ \mu m, 100 \mu m/1 \ \mu m)
```


KC01 is a standard test chip provided by STMicroelectronics

Linear Transistor

Enclosed Layout Transistor (ELT)

All pads of 1.8 V transistors are bonded on the JLCC68 package

The measurement instrument is a Semiconductor Parameter Analyzer

Pch; ELT;
$$W/L$$
=100 μ m/1 μ m;
 $V_{GS} = -1.8$ V, -1.44 V, -1.08 V, -0.72 V, -0.36 V, 0 V

 $V_{sub} = -1.8 V$

MOSFET performance does NOT depend on substrate voltage

Simplified measurement setup has been used in the radiation hall (oscilloscope + wave generator)

Transistor characterization is made through a NOT-gate circuit

During irradiations, all transistors were **biased** and **switched on**.

Test in radiation environment

At Laboratorio Energia Nucleare Applicata (LENA) in Pavia:

Irradiation with γ -rays (⁶⁰Co):

- 48 krad
- 128 krad
- 224 krad
- 488 krad
- 861 krad
- 2.0 Mrad
- 2.8 Mrad
- 3.5 Mrad
- 6.2 Mrad

At Laboratori Nazionali del Sud (LNS) in Catania:

Irradiation with 62 MeV proton beam up to 32 Mrad

Data Collection

Analysis

Nmos linear W/L = 100 um/1 um PRE-Radiation

Results

T1: PMOS linear transistor; T2: NMOS linear transistor D1, \dots , D6 : size of transistor

Results

T3: PMOS ELT transistor; T4: NMOS ELT transistor D1, ... , D6 : size of transistor

During proton beam irradiation, most of ELTs looked like switched off

Conclusions

- Hybridization:
 - \checkmark detector and front-end chip separation is uniform at few microns level
 - in progress
- Transistors in standard test chip KC01:
 - No difference of channel current at different substrate voltages
 - ✓ Linear transistors (both PMOS and NMOS) can be considered radiation hard up to 32 Mrad
 - X During and after irradiation, ELT performance is worse than linear transistors
- Tests of the sensor:
 - devices delivered in July
 - tests in progress

Thank you

Particular thanks to:

- dott. Daniele Dondi (Università degli Studi di Pavia)
 - Laboratorio Energia Nucleare Applicata
 - prof. Daniele Alloni

- dott. Gabriele Chiodini (INFN-Lecce)
- Laboratori Nazionali del Sud - dott. Marzio de Napoli

Test chip KC01

		Teg1 – 1V8CMOS		
		W_{EL} (μ m)	L (µm)	Notes
T1D1	1V8Pch	10	10	NG=2
T1D2	1V8Pch	10	1	NG=2
T1D3	1V8Pch	20	1	NG=2
T1D4	1V8Pch	40	1	NG=2
T1D5	1V8Pch	100	1	NG=2
T1D6	1V8Pch	100	1	NG=20
		Teg2 – 1V8CMOS		
		Teg2	— 1V8CM	OS
		Teg2 W _{EL} (μm)	- 1V8CM L (μm)	<i>OS</i> Notes
T2D1	1V8Nch	Teg2 W _{EL} (μm) 10	- 1V8 <i>CM</i> L (μm) 10	OS Notes NG=2
T2D1 T2D2	1V8Nch 1V8Nch	Teg2 W _{EL} (μm) 10 10	- 1V8CM L (μm) 10 1	OS Notes NG=2 NG=2
T2D1 T2D2 T2D3	1V8Nch 1V8Nch 1V8Nch	Teg2 W _{EL} (μm) 10 10 20	- 1V8CM L (μm) 10 1 1	OS Notes NG=2 NG=2 NG=2
T2D1 T2D2 T2D3 T2D4	1V8Nch 1V8Nch 1V8Nch 1V8Nch	Teg2 W _{EL} (μm) 10 10 20 40	- 1V8CM L (μm) 10 1 1 1	OS Notes NG=2 NG=2 NG=2 NG=2
T2D1 T2D2 T2D3 T2D4 T2D5	1V8Nch 1V8Nch 1V8Nch 1V8Nch 1V8Nch	Teg2 W _{EL} (μm) 10 20 40 100	- 1V8CM L (μm) 10 1 1 1 1	OS Notes NG=2 NG=2 NG=2 NG=2 NG=2

		Teg3 – 1V8CMOS – Closed			
		W_{EL} (μ m)	L (µm)	Notes	
T3D2	1V8Pch	10	1	NG=2	
T3D3	1V8Pch	20	1	NG=2	
T3D4	1V8Pch	40	1	NG=2	
T3D5	1V8Pch	100	1	NG=2	
T3D6	1V8Pch	100	1	NG=20	
		Teg4 – 1V8CMOS – Closed			
		Teg4 - 1V	′8 <i>CMOS</i> –	- Closed	
		$Teg4-1V W_{EL}~(\mu m)$	′8 <i>CMOS –</i> L (μm)	- <i>Closed</i> Notes	
T4D2	1V8Nch		/8 <i>CMOS</i> – L (μm) 1	- <i>Closed</i> Notes NG=2	
T4D2 T4D3	1V8Nch 1V8Nch		/8 <i>CMOS</i> - L (μm) 1 1	- <i>Closed</i> Notes NG=2 NG=2	
T4D2 T4D3 T4D4	1V8Nch 1V8Nch 1V8Nch	$ \begin{array}{r} Teg4 - 1V \\ W_{EL} (\mu m) \\ 10 \\ 20 \\ 40 \end{array} $	/8 <i>CMOS</i> - L (μm) 1 1 1	- <i>Closed</i> Notes NG=2 NG=2 NG=2	
T4D2 T4D3 T4D4 T4D5	1V8Nch 1V8Nch 1V8Nch 1V8Nch		/8 <i>CMOS</i> - L (μm) 1 1 1 1	- Closed Notes NG=2 NG=2 NG=2 NG=2	

Nmos linear W/L = 100 um/1 um comparison between before and after irradiation

Fit Comparison: first case

T1D2

Fit Comparison: second case

T1D6

Fit Comparison: second case

T3D4

