

Very front-end electronics for the upgrade of the CMS experiment

<u>E.Monteil</u> INFN Torino

Funded by CHIPIX65 / INFN project

The CMS experiment

- Silicon tracker ⇒ Inner part of the CMS detector
 - Composed of pixels and strips layers
 - Pixel detector \Rightarrow Closest to the beam pipe

The HL_LHC upgrade

• Parameters of the silicon pixel detector of the CMS experiment:

PARAMETER or FEATURE	1st generation LHC phase 0	2nd generation LHC Phase 1	3rd generation LHC Phase 2
Max Particle Flux	~50 MHz/cm ²	~200 MHz/cm ²	~500 MHz/cm ²
Max Pixel Flux	200 MHz/cm ²	600 MHz/cm ²	2 GHz/cm ²
Rad. Hardness	1.5 MGy	3.5 MGy	10 MGy
Pixel Dimension	100x150 um ² 400x50 um ²	100x150 um ² 250x50 um ²	50x50 um² 25x100 um²
Signal Threshold	2500-3000 e ⁻	1500-2000 e ⁻	~1000 e ⁻
L1 Trigger Latency	2-3 US	4-6 US	6-20 US
Power Budget	~0.3 W/cm ²	~0.3 W/cm ²	<0.4 W/cm ²

E n	electronics technology	250nm CMOS	250nm CMOS (CMS) 130nm CMOS (ATLAS)	65nm CMOS
--------	------------------------	------------	--	-----------

- RD53, a CMS-ATLAS collaboration, has been developed in order to design the new chip
- INFN contribute: CHIPIX 65 collaboration, a group 5 project approved in 2013 for the 2014-2016 period. 7 INFN sections involved (TO, MI, BA, PD, PI, PV, PG)

Main challenges

- New readout chip required
 - The present one can not survive the extreme Phase 2 conditions
- 65nm technology new for HEP experiment
 - Low power and radiation hard
- Very high particle flux (2 GHz/cm²)
- Maintaining or improving the detector performance
 - New pixel size (50x50 um² or 25x100 um²)
- Low power architecture
 - Required in order to maintain the material budget as low as possible
 - Around 10 uW per pixel

TORINO : Synchronous Analog Chain

8x8 pixel matrix submitted and tested Analog readout of CSA and Discriminator (via buffers)

PREAMPLIFIER

- One stage CSA with Krummenacher feedback
- Synchronous DISCRIMINATOR
 - (AC coupled to CSA)
 - offset compensated diff.amplif. + latch;
 - FAST Time-over-Threshold
 - Local oscillator strobing Latch (to 800MHz)
- Calibration circuit
 - digital signal + DC calibration level

Performance SUMMARY

- Compact: ~26um x 40 um
- Low power: < 5.5 uW (with ToT logic)
- Low noise: ENC=100e⁻@C_{det}=100 fF
- Leakage compensation: up to 50nA/pixel
- Fast Charge measurement:
 - 30 ke- in <300ns (or 800ns)
 - up to 7-8bit (125-250e-/ADC) no ext clock
- NO Threshold-Trimming:
- · autozeroing made by hardware

- CSA + Disc + Calibration circuit -> 26x40 um²
- In addition for tests:
 - Different capacitances to simulate the detector
 - Analog buffer in order to see the preamp analog output

- At the schematic level the value of T_{peak} @ 50 fF is around 18 ns
- Layout improved in the second version to reduce the peaking time

Voltage gain

Noise measured

Noise_vs_input_capacitance

- Linear trend of the Equivalent Noise Charge vs input capacitance as expected
- Noise increases with the feedback current (ballistic deficit)
- Threshold = 1000 e- \Rightarrow Around 7 σ of the noise

Comparator results

Input signal 10 ke⁻ Threshold \approx 1000 e⁻

Time duration of HIT multiple of 25 ns (clock period)

Comparator results

Input signal 10 ke⁻ Threshold \approx 1000 e⁻

- Oscillator @ 100 MHz
- Time duration of the ToT output compatible with HIT in binary mode
- In the present version, oscillation speed can be tuned up to 500 MHz, but set-up bandwidth is limited to about 100 MHz

ToT linearity

ToT linearity

ToT is linear up to (at least) 40 ke-

Conclusions and future plans

- First version of a synchronous front-end with offset compensation designed and tested
- Idea of "self-oscillating" comparator for fast ToT measurement works
- Good ToT linearity in a wide range of input signals
- Improved version submitted in May 2015
- Testing on the second version on the chip started this month

BACKUP

Pixel matrix with analog output

- 8x8 pixel matrix
 1/4 of the Mini@sic submitted in October and received in the end of January
- Readout of CSA output using analog buffering
- Readout of discriminator output using a digital buffer
- 4 pixel (2x2 region) are readout at the same time

Pixel matrix with analog output

Picture of the chip wire-bonded to the test board

Objectives

- Preamp:
 - Krummenacher feedback to compensate leakage currents up to 50 nA
 - Fast charge measurement
- Synchronous Comparator:
 - Eliminate time walk
 - "Hardware" Offset compensation using capacitors
- Different speed for ToT measurement:
 - FAST: ToT of 90 ns for Qin = 10 ke⁻ ==> OK for 2 GHz/cm²
 - SLOW: ToT of 300 ns for Qin = 10 ke⁻ ==> OK for 0.5 GHz/cm² (~0.5% ineff.)
 - Choice depends on layer, sensor used and particle flux

Power consumption

- Static current around 3.5 uA
 - Preamplifier -> 2.5 uA
 - Discriminator -> 1 uA
- Dynamic current (latch) around 0.8 uA
- The average total current is around 4.3 uA per pixel
- Considering VDD = 1.2 V the total power consumption is around 5.2 uW
 - ▶ It corresponds to around 0.2 W/cm² considering a 50x50 um² pixel
 - ► OK ~ 50% of the 0.4 W/cm² required
- This configuration has been used for the measurements showed in this presentation

VFE layout - v2 - 2x2 region

Torino Analog Pixel Front-End - CMS tracker week - 16/07/2015

Measurements on First Prototype

Analog-Out Q=10ke-, ToT=90ns Measurement with Very-Fast ToT

Fast ToT: oscillator counting ToT ; threshold @1ke-100 MHz (limited by analog readout and set-up)

measurement with Standard-ToT

VFE layout - v2

Torino Analog Pixel Front-End - CMS tracker week - 16/07/2015

ENC ~ 167 e⁻ @ Ifeed = 40 nA (fast), Cinput = 130 fF

- ENC ~ 102 e- @ Ifeed = 10 nA (slow), Cinput = 130 fF
- Measurement performed with the clock activated

ENC ~ 108 e⁻ @ Ifeed = 40 nA (fast), Cinput = 50 fF

- ENC ~ 83 e- @ Ifeed = 10 nA (slow), Cinput = 50 fF
- Measurement performed with the clock activated

It could be better

We have understood the problems

Too high gain fluctuations due to mismatch

Threshold [#e]

Underestimation of the latch dynamic offset

Congresso Nazionale SIF 2015 - 25/09/2015

Threshold [#e]

CSA schematic

Cascode with current splitting and source follower

Synchronous Discriminator with offset compensation

No more need of threshold trimming

• Why?

• AC coupling between CSA and comparator and offset compensation technique

Krummenacher

current splitting and source follower

- Preamp
 - One stage Charge Sensitive Amplifier
 - Krummenacher feedback to compensate leakage currents up to 50 nA
 - Selectable feedback capacitance (2.5,4,6.5 fF)

Fast ToT: comparator turned into local oscillator using an asynchronous logic feedback loop