	Laser coupling in capillary tubes with dielectric walls	
0	0000	

Betatron Radiation in Capillaries for Plasma Acceleration Experiments

Alessandro Curcio^{1,2}

In collaboration with:

M.Anania¹, F.Bisesto^{1,2}, E.Chiadroni¹, M.Ferrario¹, M.Galletti¹, D.Giulietti³, M.Petrarca^{2,4}, V. Shpakov¹

¹Laboratori Nazionali di Frascati (INFN)
 ²Physics Department of the Roma University "La Sapienza", Italy
 ³Physics Department of the University and INFN, Pisa, Italy
 ⁴ INFN Roma1, Rome, Italy

101° Congresso SIF, Roma 09/2015

Alessandro Curcio

	Laser coupling in capillary tubes with dielectric walls	
	00	

Summary

- Quasi-linear wakefield regime
- 2 Electron acceleration in capillaries
 - Wakefield modes in capillaries
 - Betatron Radiation from capillaries
- Laser coupling in capillary tubes with dielectric walls
 Instrumentation and Setup
 - Measurements

4 Conclusions

Bet	atron Radiation	Laser coupling in capillary tubes with dielectric walls	
•		00 0000	
0			

Quasi-linear wakefield regime

Betatron Radiation Spectra: X-rays

 $I_0 \sim \times 10^{18} \, W/cm^2, \ \gamma_{max} \sim 1000, \ n_e = 5 \times 10^{17}/cm^3$

Acceleration length \sim 5 cm

Spatial distribution of the radiation

Divergence $\theta_{\beta} \sim \sigma k_{\beta} \sim 3 mrad$

Alessandro Curcio

Wakefield modes in capillaries

Electromagnetic hybrid modes/1

Alessandro Curcio Betatron Radiation in Capillaries Electric field component of the mth mode: $E_{1m} = J_0 (u_m \frac{r}{R_{cap}}) e^{-k_m^{l}z} \cos[\omega_0 t - k_{zm}z]$ Longitudinal wave number of the mth mode: $k_{zm} = \sqrt{k_0^2 - \frac{u_m^2}{R_{cap}^2}}$ Damping coefficient of the mth mode: $k_m^{l} = \frac{u_m^2}{2k_{zm}^2 R_{cap}^3} \frac{1+\varepsilon_r}{\sqrt{\varepsilon_r-1}}$ Group velocity of the mth mode: $v_{g,m} = c\sqrt{1 - (\frac{u_m}{R_{cap}k_0})^2}$ Table lettric field inside the capillance

Total electric field inside the capillary: $E_L = \sum_m A_m E_{1m}$

Expansion coefficient for the mth mode of the total electric field:

$$A_m = 2 \frac{\int_0^1 x E_L(x) J_0(u_m x) dx}{J_1^2(u_m)}$$

Wakefield modes in capillaries

Electromagnetic hybrid modes/2

Laser electric field in the focus of a flat top laser profile:

$$E_L = E_{L0} \frac{J_1(\frac{\nu_3 r}{r_0})}{r}$$

Third zero of the Bessel J_1 : $\nu_3 = 10.174$

Coupling efficiency for the mth mode: $C_m = \frac{4}{J_1^2(u_m)} |\int_0^1 J_1(\frac{\nu_3 R_{capx}}{r_0}) J_0(u_m x) dx|^2$

Alessandro Curcio

	Electron acceleration in capillaries	Laser coupling in capillary tubes with dielectric walls 00 0000	
Wakefield modes in c	apillaries		

For a matched flat top profile and linearly polarized laser pulse

Normalized laser vector potential:

 $a = \frac{0.91a_0}{\sqrt{2}} e^{-\zeta^2/2\sigma_L^2} J_0(u_0 \frac{r}{R_{cap}})$

The optimal coupling efficiency is obtained when: $R_{cap}/r_0 \sim 0.35$

From the Poisson equation, the continuity equation, and the fluid momentum equation, in the linear ($a_0 < 1$) 3D regime, the scalar wakefield potential comes to be:

$$\Phi(r,\zeta) = -\frac{mc^2 k_p}{2} \int_{\zeta}^{\infty} d\zeta' \sin[k_p(\zeta-\zeta')] a^2(r,\zeta')$$

The corresponding longitudinal wakefield is:

$$E_{z} \sim 0.83 E_{0} \frac{\sqrt{\pi}}{4} a_{0}^{2} \sigma_{L} k_{p} J_{0} (u_{1} \frac{r}{R_{cap}}) e^{-k_{p}^{2} \sigma_{L}^{2}/4} \cos[k_{p} \zeta]$$

The corresponding transverse wakefield is:

$$E_r \sim -0.83 \frac{u_1}{R_{cap}} J_1(u_1 \frac{r}{R_{cap}}) E_0 \sqrt{\pi} a_0^2 \sigma_L e^{-k_p^2 \sigma_L^2/4} \sin[k_p \zeta]$$

Alessandro Curcio

	Electron acceleration in capillaries	Laser coupling in capillary tubes with dielectric walls	
	000000	00	
Wakefield modes in c	apillaries		

Laser propagation equation in a plasma medium inside a capillary $(a_0 < 1)$:

$$\left(\frac{1}{r^2}\frac{\partial}{\partial r}r^2\frac{\partial}{\partial r}+\frac{\partial^2}{\partial z^2}-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)\overrightarrow{A}\sim k_p^2\frac{n_e}{\gamma n_0}\overrightarrow{A}$$

By the assumption $\overrightarrow{A} \propto e^{i(kz-\omega t)}$ (neglecting focusing effects):

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} - \left(\frac{u_m}{R_{cap}}\right)^2\right)\overrightarrow{A(r)} = k_p^2 \frac{n_e(r)}{\gamma n_0} \overrightarrow{A(r)}$$

 $\frac{u_m}{R_{cap}} \equiv k_{\perp m} \ u_m = m^{th}$ zero of the Bessel J_0 , the solution of the Schroedinger homogeneous equation

Definition of plasma operator: $\hat{P} \equiv \frac{n_e}{\gamma n_0}$

First order correction to the transverse wavenumber for the mth mode:

$$k_{\perp m}^{2'} \sim k_{\perp m}^2 + k_p^2 < EH_{1m} |\widehat{P}| EH_{1m} >, \ k_p = {
m plasma}$$
 wavenumber

Approximated expression of potential vector inside a capillary in a plasma medium:

$$|\overrightarrow{A}\rangle = |\overrightarrow{EH_{11}}\rangle + \frac{k_{p}^{2}}{k_{\perp 1}^{2} - k_{\perp 2}^{2}} < \overrightarrow{EH_{12}} |\widehat{P}|\overrightarrow{EH_{11}}\rangle |\overrightarrow{EH_{12}}\rangle$$

Alessandro Curcio

	Electron acceleration in capillaries	Laser coupling in capillary tubes with dielectric walls 00 0000	
Wakefield modes in ca	apillaries		

Developing the normalized vector potential in the capillary modes:

 $a^2 = (\sum_m \overrightarrow{a_m})^2$

We have for the first order wakefield:

$$\Phi(r,\zeta) = -\frac{mc^2k_p}{2} \int_{\zeta}^{\infty} d\zeta' \sin[k_p(\zeta-\zeta')] a^2(r,\zeta') \sim$$

$$\sim -\frac{mc^2k_p}{2} \int_{\zeta}^{\infty} d\zeta' \sin[k_p(\zeta-\zeta')] (a_1^2 + a_1a_2)(r,\zeta') \sim$$

$$\sim \Phi_1 + \Phi_{12}$$

For a perfectly matched flat top laser profile $\Phi_{12} \sim 0.1 \ \Phi_1$

Alessandro Curcio

	Electron acceleration in capillaries 00000● 0	Laser coupling in capillary tubes with dielectric walls 00 0000		
Wakefield modes in capillaries				

The coupling term Φ_{12} is an oscillating beating term with wavenumber $\Delta k_{z2} = k_{z1} - k_{z2}$, corresponding for most of the real cases to wavelengths of the order of millimeters up to few centimeters. Therefore both the longitudinal and radial wakefields manifest long-range oscillations beside their natural one (that at the plasma wavelength).

Example:

 $R_{cap} \sim 100 \mu m$ $\lambda_0 = 0.8 \mu m$ $\Delta k_{c2} = 628.7 \ m^{-1}$

Corresponding to a beating wavelength of $1 \mbox{\it mm}$

	Electron acceleration in capillaries	Laser coupling in capillary tubes with dielectric walls	
	000000 •	00 0000	
DAL DURIT C			

Betatron Radiation from capillaries

Spectrum modification in case of coupling

 E_n is the irradiated energy. The Matched Coupling corresponds to $R_{cap}/r_0 \sim 0.35$ while the Not Matched Coupling corresponds to $R_{cap}/r_0 \sim 0.6$. The net effect of the coupling can be viewed as a red shift of the critical energy. The decrease of the critical energy in case of coupling is basically due to the decrease of the laser group velocity, namely of the plasma wave phase velocity. In this calculation the coupling with higher modes has been neglected considering a beating wavelength much shorter than the capillary length.

Alessandro Curcio

Instrumentation and Setup

Hexapod PI

	- 20	19	Unit	Tolerance
	for higher resolution and load	for higher velocity		
Active axes	$X, Y, Z, \theta_X, \theta_Y, \theta_Z$	$X, Y, Z, \theta_X, \theta_Y, \theta_Z$		
Motion and positioning				
Travel range* X, Y	±22.5	±22.5	mm	
Travel range* Z	±12.5	±12.5	mm	
Travel range* 0 _X , 0 _Y	±7.5	±7.5	•	
Travel range* 0 _Z	±12.5	±12.5		
Single- actuator design resolution	0.007	0.5	μm	
Min. incremental motion X, Y, Z	0.3	1	μm	typ.
Min. incremental motion $\theta_{\chi}, \theta_{\gamma}, \theta_{\chi}$	3.5	12	µrad	typ.
Backlash X, Y	3	1	μm	typ.
Backlash Z	1	1	μm	typ.
Backlash 6 _x , 6 _y	20	15	µrad	typ.
Backlash 8 ₂	25	25	µrad	typ.
Repeatability X, Y	±0.5	±0.5	μm	typ.
Repeatability Z	±0.1	±0.1	μm	typ.
Repeatability 0 _x , 0 _y	±2	±2	µrad	typ.
Repeatability 02	±2.5	±2.5	µrad	typ.
Max. velocity X, Y, Z	1	25	e Vmm	
Max. velocity θ _x , θ _y , θ _z	11	270	mrad/s	
Typ. velocity X, Y, Z	0.5	10	e Vmm	
Typ. velocity $\theta_x, \theta_y, \theta_z$	5.5	55	mrad/s	
Mechanical properties				
Stiffness X, Y	1.7	1.7	N/ µm	
Stiffness Z	7	7	N/ µm	
Load (base plate horizontal / any orientation)	10/5	5/2.5	kg	max.
Holding force, de- energized (base plate horizontal / any orientation)	100 / 50	15/5	N	max.
Motor type	DC gear motor	DC motor		
Miscellaneous				
Operating temperature range	-10 to 50	-10 to 50	°C	
Material	Aluminum	Aluminum		
Mass	8	8	kg	±5%
Cable length	3	3	m	±10 mm

Hexapod

Alessandro Curcio

	Electron acceleration in capillaries	Laser coupling in capillary tubes with dielectric walls	Conclusions		
		00			
Instrumentation and Setup					

Experimental Setup

Alessandro Curcio

	Laser coupling in capillary tubes with dielectric walls	
	0000	

Measurements

Laser Focus at the Entrance

 $w_0 = 26.15 \mu m$

Alessandro Curcio

	Laser coupling in capillary tubes with dielectric walls	
	0000	
Managements		

Measurements

Laser Focus at the Exit

- \star Laser Power : \sim 35 \pm 1 mW
- \star Focus diameter : ~ (55.6 \pm 7) μm
- \star Magnification : ~ 1.5

Fitting Curve: $a + be^{-(r-c)^2/w_0^2}$ a = 2.85 b = 28.86 $c = 113.54 \mu m$ $w_0 = 27.80 \mu m$

Alessandro Curcio

		Laser coupling in capillary tubes with dielectric walls	
	000000	00	
		0000	
Measurements			

Laser-offset Test

The offset dR is considered in the transverse plane with respect to the laser-capillary axis

Best Coupling

	Laser coupling in capillary tubes with dielectric walls	
	0000	
Measurements		

Laser-misalignment Test

The misalignment $d\theta$ is considered in the propagation plane with respect to the laser-capillary axis

Best Coupling

 $d\theta = 3.5 mrad$

 $d\theta = 8.7 mrad$

Alessandro Curcio Betatron Radiation in Capillaries $d\theta = 5.2 mrad$

Conclusions e perspectives

*The propagation of an ultra-short laser in a capillary waveguide has been considered from the point of view of the multimode wakefield structure and the modification in betatron radiation spectra.

 \star We would like to test these methods during the forthcoming experiments of plasma acceleration at LNF.

★ We have tested the coupling of the laser inside a capillary with the help of the Hexapod PI. The coupling with the *EH*11 mode is significantly maintained for an offset of about 30 μm and a misalignment of about 5 *mrad*.

	Laser coupling in capillary tubes with dielectric walls	Conclusions
	00	
0	0000	

Alessandro Curcio Betatron Radiation in Capillaries