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Quasi-linear wakefield regime

Betatron Radiation Spectra: X-rays

I0 ∼ ×1018W/cm2, γmax ∼ 1000, ne = 5× 1017/cm3

Acceleration length ∼ 5 cm

Betatron spectrum
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Wakefield modes in capillaries

Electromagnetic hybrid modes/1

Energy density
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Electric field component of the mth mode:

E1m = J0(um
r

Rcap
)e−klmz cos[ω0t − kzmz]

Longitudinal wave number of the mth mode:

kzm =

√
k2

0 −
u2
m

R2
cap

Damping coefficient of the mth mode:

k lm =
u2
m

2k2
zmR3

cap

1+εr√
εr−1

Group velocity of the mth mode:

vg,m = c
√

1− ( um
Rcapk0

)2

Total electric field inside the capillary:
EL =

∑
m AmE1m

Expansion coefficient for the mth mode of the
total electric field:

Am = 2

∫ 1
0 xEL(x)J0(umx)dx

J2
1

(um)
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Wakefield modes in capillaries

Electromagnetic hybrid modes/2

Coupling efficiency for a flat top laser profile
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Laser electric field in the focus of a flat top
laser profile:
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Third zero of the Bessel J1:
ν3 = 10.174

Coupling efficiency for the mth mode:
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Wakefield modes in capillaries

Laser wakefields/1

For a matched flat top profile and linearly polarized laser pulse

Normalized laser vector potential:

a =
0.91a0√

2
e
−ζ2/2σ2

L J0(u0
r

Rcap
)

The optimal coupling efficiency is obtained when:
Rcap/r0 ∼ 0.35

From the Poisson equation, the continuity equation, and the fluid momentum equation, in the linear (a0 < 1) 3D
regime, the scalar wakefield potential comes to be:

Φ(r, ζ) = −mc2kp
2

∫∞
ζ dζ′ sin[kp(ζ − ζ′)]a2(r, ζ′)

The corresponding longitudinal wakefield is:

Ez ∼ 0.83E0

√
π

4
a2
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)e
−k2

pσ
2
L/4
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The corresponding transverse wakefield is:

Er ∼ −0.83
u1

Rcap
J1(u1

r
Rcap

)E0
√
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Wakefield modes in capillaries

Laser wakefields/2

Laser propagation equation in a plasma medium inside a capillary
(a0 < 1):

( 1
r2
∂
∂r r

2 ∂
∂r + ∂2

∂z2 − 1
c2

∂2

∂t2 )
−→
A ∼ k2

p
ne
γn0

−→
A

By the assumption
−→
A ∝ e i(kz−ωt)(neglecting focusing effects):

( ∂
2

∂r2 + 1
r
∂
∂r
− ( um

Rcap
)2)
−−→
A(r) = k2

p
ne (r)
γn0

−−→
A(r)

um
Rcap

≡ k⊥m um=mth zero of the Bessel J0, the solution of the Schroedinger homogeneous equation

Definition of plasma operator: P̂ ≡ ne
γn0

First order correction to the transverse wavenumber for the mth mode:

k2′
⊥m ∼ k2

⊥m + k2
p < EH1m|P̂|EH1m >, kp = plasma wavenumber

Approximated expression of potential vector inside a capillary in a plasma medium:

|
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p
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−k2
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<
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Wakefield modes in capillaries

Laser wakefields/3

Developing the normalized vector potential in the capillary modes:

a2 = (
∑

m
−→am)2

We have for the first order wakefield:

Φ(r , ζ) = −mc2kp
2

∫∞
ζ

dζ ′ sin[kp(ζ − ζ ′)]a2(r , ζ ′) ∼

∼ −mc2kp
2

∫∞
ζ

dζ ′ sin[kp(ζ − ζ ′)](a2
1 + a1a2)(r , ζ ′) ∼

∼ Φ1 + Φ12

For a perfectly matched flat top laser profile Φ12 ∼ 0.1 Φ1
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Wakefield modes in capillaries

Laser wakefields/4

The coupling term Φ12 is an oscillating beating term with wavenumber
∆kz2 = kz1 − kz2, corresponding for most of the real cases to
wavelengths of the order of millimeters up to few centimeters. Therefore
both the longitudinal and radial wakefields manifest long-range
oscillations beside their natural one (that at the plasma wavelength).

Example:

Rcap ∼ 100µm

λ0 = 0.8µm

∆kz2 = 628.7 m−1

Corresponding to a beating wavelength of 1mm
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Betatron Radiation from capillaries

Spectrum modification in case of coupling

a0 ∼ 1, ne = 1.8× 1017/cm3, Lcap = 2cm, Rcap = 100µm
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Matched Coupling

En is the irradiated energy. The Matched Coupling corresponds to Rcap/r0 ∼ 0.35 while the Not Matched
Coupling corresponds to Rcap/r0 ∼ 0.6. The net effect of the coupling can be viewed as a red shift of the critical
energy. The decrease of the critical energy in case of coupling is basically due to the decrease of the laser group
velocity, namely of the plasma wave phase velocity. In this calculation the coupling with higher modes has been
neglected considering a beating wavelength much shorter than the capillary length.
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Instrumentation and Setup

Hexapod PI

Hexapod
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Instrumentation and Setup

Experimental Setup

λ/2

  PBS

f=50 cm

f=20 cm

f=50 cm
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Measurements

Laser Focus at the Entrance

? Laser Power : ∼ 40± 1 mW
? Focus diameter : 2w0 ∼ (52.3± 7) µm
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a = 1.63
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w0 = 26.15µm
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Measurements

Laser Focus at the Exit
? Laser Power : ∼ 35± 1 mW
? Focus diameter : ∼ (55.6± 7) µm
? Magnification : ∼ 1.5
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Measurements

Laser-offset Test
The offset dR is considered in the transverse plane with respect to the laser-capillary axis

Best Coupling

dR=10µm

dR=20µm

dR=30µm

dR=40µm

dR=50µm

dR=60µm
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Measurements

Laser-misalignment Test
The misalignment dθ is considered in the propagation plane with respect to the laser-capillary axis

Best Coupling

dθ=3.5 mrad

dθ=5.2 mrad

dθ=7 mrad

dθ=8.7 mrad
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Conclusions e perspectives

?The propagation of an ultra-short laser in a capillary waveguide
has been considered from the point of view of the multimode
wakefield structure and the modification in betatron radiation
spectra.
? We would like to test these methods during the forthcoming
experiments of plasma acceleration at LNF.
? We have tested the coupling of the laser inside a capillary with
the help of the Hexapod PI. The coupling with the EH11 mode is
significantly maintained for an offset of about 30 µm and a
misalignment of about 5 mrad .
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