

The Mu2e Experiment at Fermilab

Fabio Happacher, LNF-INFN On behalf of the Mu2e Collaboration

F. Happacher - SIF 2015

Presentation outline

- Why Mu2e
- Experimental technique
- Accelerator complex
- Detectors layout with a zoom into the calorimeter
- Status of Mu2e
- Conclusions

What is Mu2e?

A search for Charged-Lepton Flavor Violation via

$$\mu^- N \to e^- N$$

- Will use *current* Fermilab accelerator complex to reach a sensitivity 10 000 better than current world's best
- Will have *discovery* sensitivity over broad swath of New Physics parameter space
- Mu2e will detect the electron coming from the decay of a muon in the field of a nucleus with respect to standard muon capture

$$R_{\mu e} = \frac{\mu^{-}Al \to e^{-}Al}{\mu^{-}Al \to capture} < 6 \times 10^{-17} \ (90\% \ C.L.)$$

 $\mu^- N \rightarrow e^- N$

- Muon-to-electron conversion is similar but complementary to other CLFV processes as $\mu \rightarrow e\gamma$ and $\mu \rightarrow 3e$.
- The Mu2e experiment searches for muon-to-electron conversion in the coulomb field of a nucleus: μ⁻ Al → e⁻ Al
- CLFV processes are strongly suppressed in the Standard Model
 - it is not forbidden due to neutrino oscillations
 - In practice BR($\mu \to e \gamma$) ~ $\Delta m_{\nu}^{~2}$ / $M_w^{~2}$ < 10^{-54} is negligible

4

- New Physics could enhance CLFV rates to observable values
- A detected signal from Mu2e would be clear evidence of physics beyond the SM, NP, Susy, Compositeness, Leptoquark, Heavy neutrinos, Second Higgs Doublet, Heavy Z'

μ conversion is sensitive to wide array of NP models

F. Happacher - SIF 2015

Mu2e operating principle

- Generate a intense beam (10¹⁰/s) of low momentum (p_T<100 MeV/c) negative μ
- Stop the muons in a target
 - Mu2e plans to use Aluminum
 - Sensitivity goal requires ~10¹⁸ stopped muons
 - -10^{20} protons on target (2 year run $-2x10^7$ s)
- The stopped muons are trapped in orbit around the nucleus
 - In orbit around aluminum: τ_{μ}^{AI} = 864 ns
 - Large τ_{μ}^{N} important for discriminating background
- Look for events consistent with $\mu N \rightarrow eN$

Mu2e Signal

 $\mu^{-'}$ s captured in the stopping target falls to a 1S bound state giving origin to:

- The muon decays in orbit (DIO): $\mu^- + Al \rightarrow e^- \overline{\nu}_e \nu_\mu + Al$ (40%)
- Muon capture: the wave function of muons and nuclei overlap, the nucleus can trap the muon: $\mu^- + Al \rightarrow \nu_\mu + Mg$ (60%) generating a flux of p,n and γ
- Neutrinoless muon to electron conversion
 - Results in an electron of 104.97 MeV

$$E_{CE} = m_{\mu}c^{2} - B_{\mu}(Z = 13) - C_{\mu}(A = 27)$$

- $-~M_{\mu}$ muon mass, 105.66 MeV/c²
- B_{μ} binding energy of a muon in the 1S orbit of Al, 0.48 MeV
- C_µ nuclear recoil of Al, 0.21 MeV

 $\mu^{-} + Al \rightarrow e^{-} + Al$

Backgrounds to deal with

The atomic, nuclear, and particle physics of μ^{-} drive the design of the experiment

- Antiprotons: produce pions when they annihilate in the target: are negative and they can be slow
- Pion/muon decay in flight
- Electrons from beam
- Cosmic rays

Category	Source	Events
	μ Decay in Orbit	0.20
Intrinsic	Radiative μ Capture	<0.01
	Radiative π Capture	0.02
	Beam electrons	<0.01
	μ Decay in Flight	<0.01
Late Arriving	π Decay in Flight	<0.01
	Anti-proton induced	0.05
Miscellaneous	Cosmic Ray induced	0.10
Total Background		0.37

Beam structure

Use the fact that muonic atomic lifetime >> prompt background Need a pulsed beam to wait for prompt background to reach acceptable levels \rightarrow Fermilab provides the beam we need !

OUT of time protons are also a problem->prompt bkg arriving late... To keep associated background low we need proton extinction of 10⁻¹⁰: proton extinction (between pulses) \rightarrow # protons out of beam/# protons in pulse

Muon from decay in orbit: DIO

> The most sneaky source of background comes from Stopped Muons

$$\left[\mu^{-} + A(N,Z)\right]_{bound}^{1S} \rightarrow A(N,Z) + e^{-} + \overline{\nu}_{e} + \nu_{\mu}$$

- Electrons from decay of bound muons (DIO)
- If the neutrinos are at rest the e⁻ can have exactly the conversion energy E_{CE}=104.97 MeV

Recoil tail extends to conversion energy, with a rapidly μ Decay in Orbit Spectrum for ²⁷AI falling spectrum near the endpoint

Accelerator Scheme & Proton extinction

- Booster: batch of 4×10¹² protons every 1/15th second
- Booster "batch" is injected into the Recycler ring and re-bunched into 4 bunches
- These are extracted one at a time to the Delivery ring
- As a bunch circulates, protons are extracted to produce the desired beam structure → bunches of ~3x10⁷ protons each, separated by 1.7 µs

Proton Extinction achieving 10⁻¹⁰ is hard; normally

get 10⁻² – 10⁻³

- Internal (momentum scraping) and bunch formation in Accumulator
- External: oscillating (AC) dipole

The Mu2e beamline

- Mu2e Solenoid System
 - Superconducting
 - Requires a cryogenic system
 - Inner bore evacuated to 10⁻⁴ Torr to limit background due to interactions of the charged particles with air

The Mu2e beamline

Production Solenoid

- Pulsed proton beam coming from Debuncher captured, spiral *n*'s are captured, spiral
 *a*round and decay.
 *a*round and decay.
 - 8 GeV protons
 - every 1695 ns / 200 ns width

TS3

TS5

Production target

solenoid

- tungsten rod, 16 cm long with a 3 mm radius
- produces pions
- Solenoid

(0, 0, 0)

NA-A

TS4

3100

- a graded magnetic field between 4.6 T (at end) and 2.5 T (towards the transport solenoid) traps the charged
- particles and accelerates them toward the transport
 - off-center central TS collimator and 90° bends passes low momentum negative muons and suppresses positive particle and high momentum negative particles.

Detector Solenoid

cher t's are captured, spira around and decay. 2.5Te Graded Solenoid Field A.6T

Pulsed beam of incident protons

Transport Solenoid

- Graded magnetic from 2.5 T (at the production solenoid entrance) to 2.0 T (at the detector solenoid entrance)
 - Allows muons to travel on a helical path from the production solenoid to the detector solenoid
- S-shaped to remove the detector solenoid out of the line of sight from the production solenoid
 - No neutral particles produced in the production solenoid enter the detector solenoid

F. Happacher - SIF 2015

Mu2e Beamline

- The Detector Solenoid houses the Al target and the two main detectors: the tracker and the calorimeter
 - 17 Aluminum disks, 0.2 mm thick, radius between 83 mm (upstream) and 63 mm (downstream)

- Surrounded by graded magnetic field from 2.0 T (upstream) to 1.0 T (downstream)
 - Conversion electrons will travel on a helical path toward the tracker and then hit the calorimeter
 - Electrons ejected away from the tracker experience an increased magnetic field which reflects them back toward the tracker

Negative muons

F. Happacher SIF 2015

Solenoid status

□ The Super Conducting magnets are the heart of MU2E Apparatus

□ PS and DS bid is over. They will be built by General Atomics, USA

□ TS prototype manufactured by ASG Superconductors, INFN Genova and Fermilab Technical division.

TS proto @ FNAL since December 2014.

□ Three final tests done in August 2015: alignment, current and temperature

 \rightarrow Results were really satisfactory exceeding expectation

The Mu2e Tracker

- The Tracker will employ low mass straw drift tubes with tubes transverse to secondary beam
- 15 mm thick straw walls, dual-ended readout, length 430 – 1120 mm.
- It must operate in vacuum
- Self-supporting "panel" consists of 100 straws
- 6 panels assembled to make a "plane"
- 2 planes assembled to make a "station" -> 18 stations
- Rotation of panels and planes improves stereo information 33 117 cm in length
- >20k straws total

- 5 mm diameter straw
- Spiral wound
- Walls: 12 μm Mylar + 3 μm epoxy + 200 Å Au + 500 Å Al
- \bullet 25 μm Au-plated W sense wire

The Mu2e Tracker

- Inner 38 cm is purposefully un-instrumented
 - Blind to beam flash
 - Blind to >99% of DIO spectrum

First Prototype Panel

Fermilab, November 2014

 Starting to test in vacuum

Fermilab, March 2015

Mu2e Spectrometer Performance

• Performance well within physics requirements

The Mu2e Calorimeter

for CE signal @ 100 MeV

- Crystal calorimeter
 - Compact
 - Radiation hard
 - Good timing and energy resolution
- \succ Particle Identification to distinguish e/ μ
- Seed for track pattern recognition
- Tracking independent trigger
- ➢ Work in 1 T field and 10⁻⁴ Torr vacuum
- RadHard up to 30 krad, 10¹² n/cm²/year

High granularity crystal based calorimeter with:

- \succ σ/E of O(5%) and Time resolution < 500 ps
- Position resolution of O(1 cm)
- > O(98%) acceptance

The Mu2e Calorimeter

The Calorimeter consists of two disks with 1650 BaF₂ square crystals (30x30x200) mm³

- **Q** $R_{IN} = 351 \text{ mm}, R_{OUT} = 660 \text{ mm}, \text{ Depth} = 10 X_0 (200 \text{ mm})$
- Each crystal readout by two SL APDs (9x9 mm²)
- □ Analog FEE and digital electronics located on calo
- □ Radioactive source and laser systems provide absolute calibration and monitoring capability.

To reduce the slow BaF_2 component at higher wavelengths, a Caltech/JPL/RMD consortium was formed to develop a RMD APD into a super-lattice APD with high Q.E. @ 220 nm that incorporates also an Atomic Layer Deposition antireflection filter to reduce efficiency for $\lambda > 300$ nm.

Prototypes with LYSO+APD, CsI+MPPC tested Next one with BaF₂ + SL APDs in progress

Good progresses on FEE and mechanics

The Calorimeter engineering

Mu2e Pattern Recognition

 A signal electron, together with all the other "stuff" occurring simultaneously, integrated over 500-1695 ns window

+1.413e+03 ns

+1.106e+03 ns +7.993e+02 ns +4.924e+02 ns

25

F. Happacher - SIF 2015

Mu2e Pattern Recognition

(particles with hits within +/-50 ns of signal electron t_{mean})

- ❑ Search for tracking hits with time and azimuthal angle compatible with the calorimeter clusters (|ΔT| < 50 ns) → simplification of pattern recognition
- Add search of an Helix passing through cluster and selected hits + use calorimeter time to calculate tracking Hit drift times
- □ → Reduce the wrong drift sign assignments i.e. smaller positive momentum tail

Calo prototyping and beam testing

CsI+MPPC tests

The Cosmic ray Veto

Veto system covers entire DS and half TS

Cosmic µ can generate background events via decay, scattering, or material interactions

Mu2e Cosmic-Ray Veto

- Will use 4 overlapping layers of scintillator
 - Each bar is 5 x 2 x \sim 450 cm³
 - 2 WLS fibers / bar
 - Read-out both ends of each fiber with SiPM
 - Have achieved ϵ > 99.4% (per layer) in test beam

Mu2e Detector Hall

- Construction well along
 - Expect to warm it up sometime in the summer of 2016

Apr 18, 2015: Mu2e groundbreaking

Construction Photos

• Steady progress being made

F. Happacher - SIF 2015

Mu2e Schedule

F. Happacher - SIF 2015

Summary

The Mu2e experiment:

- Improves sensitivity by a factor of 10⁴
- Provides discovery capability over a wide range of New Physics models
- is complementary to LHC, heavy-flavor, and neutrino experiments
- Mu2e has completed the CD-2 and CD3 for the long lead items
 → Construction of the solenoids will start next year.
 - → Detector Review in spring 2016 to freeze detector with CD3 in summer 2016
 - \rightarrow civil construction ongoing
 - \rightarrow Construction period 2016-2018 followed by installation in 2019