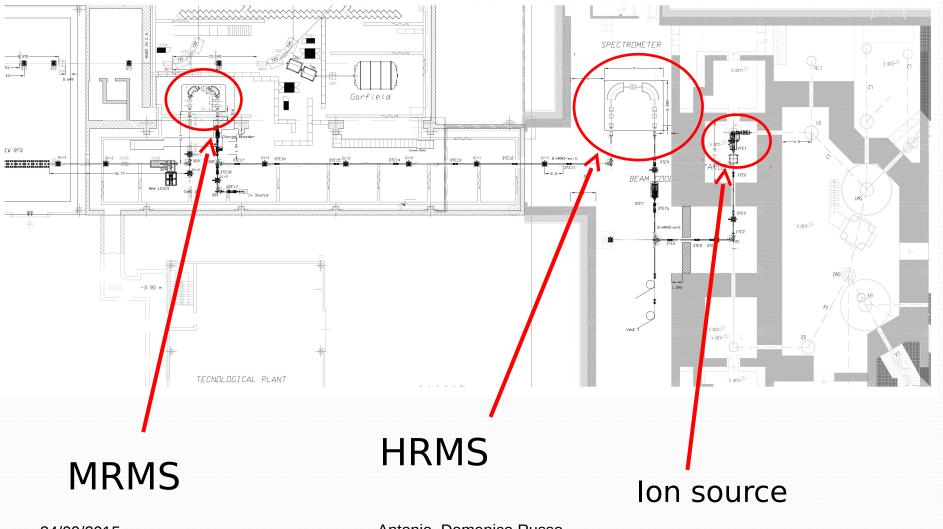


The Medium and High resolution mass separators for SPES facility

101° congresso della Società Italiana di Fisica

<u>Russo A.D.</u>, Calabretta L., Comunian M., Bellan L.



- SPES Layout
- HRMS design
- MRMS design

SPES Layout

Foreword

To obtain the ions of interest it is necessary :

• To remove isobar ions produced from the source with high resolution mass separator (HRMS)

• Clean up the beam from contaminants introduced by the charge breeder with medium resolution mass separator (MRMS)

Isobaric nuclei table

 $\Delta M/M = 1/133$

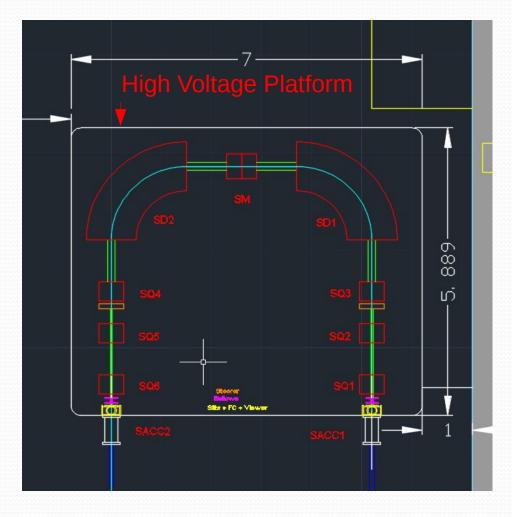
Beam reference: ¹³²Sn produced by ions source

		ZA	129	130	131	132 /	133	134	135
		45							
		46							
ΔM/M=1/11578		47	128943950	129950700					
	ž.	48	128931820	129933940	130940600	131946040	132952850		
	- In	49	128921805	129924980	130926972	131933000	132938310	133944540	134950050
	<mark>_Sn</mark>	50	128913465	129913974	13091704	131917827	132923913	133928682	134934909
	Sb	51	128909147	129911662	130911988,8	131914507,7	132915273	133920535,7	134925185
	Те	52	128906596,5	129906222,7	130908522,2	131908547	132910969	133911394	134916555,
	ŝi l	53	128904984	129906670	130906126,3	131907994	132907797	133909759	134910049
	Xe	54	128904780,9	129903509,4	130905084,1	131904155,09	132905910,8	133905394,7	134907228
	Cs	55	128906066	129906709	130905465	131906433,9	132905452	133906719	134905977
	Ba	56	128908681	129906321	130906941	131905061,1	132906007	133904508	134905688
	La	57	128912694	129912369	130910070	131910120	132908220	133905814	134906984
	Ce	58	128918100	129914740	130914430	131911464	132911520	133908928	134909161
	Pr	59	128925100	129923590	130920230	131919260	132916331	133915697	134913112
	Nd	60	128933100	129928510	130927248	131923321	132922350	133918790	134918181

1/200 selected species

HRMS selected species

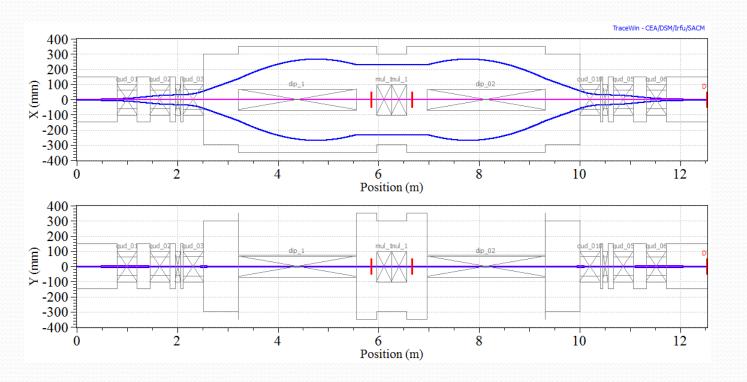
Nominal beam


A separation in mass of over 1/20000 ensures a "clean selection", in particular the $^{132}\mathrm{Cs}$

tituto Nazionale

High Resolution Mass Separator

A Scaled up version of the separator designed by Cary Davids for CARIBU project, Argonne

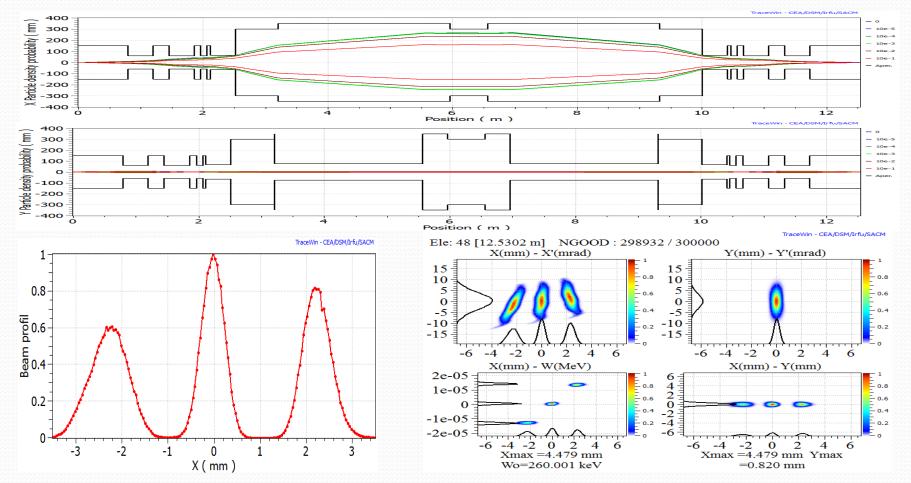

<u></u>	~~~~~	*****				
Parameters	CARIBU	SPES-LNL				
Bending radius	500 mm	1500 mm				
Beam Energy	50 keV	260 keV				
Magnetic field A=20	2.9 kGauss	<u>2.2</u> <u>kGauss</u>				
Magnetic field A=200	9.1 kGauss	6.9 kGauss				
Bending angle	60°	90°				
Entrance/exit angle	23	28.4°				
Pole gap	80 mm	<80 mm				
Pole width	620 mm	<640 mm				

First order SPES optics

Istituto Nazionale

First order simulation: mass resolving power and beam envelope

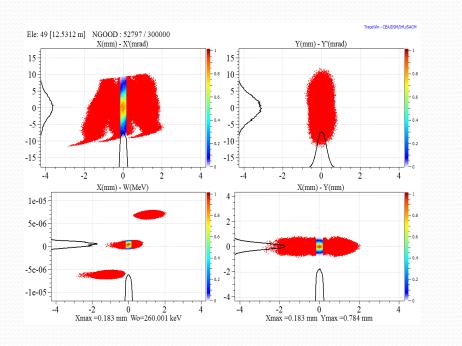
No aberrations included in the calculation


Resolving Power = 95000

Multiparticle simulation

Istituto Nazionale

1/20000 in mass

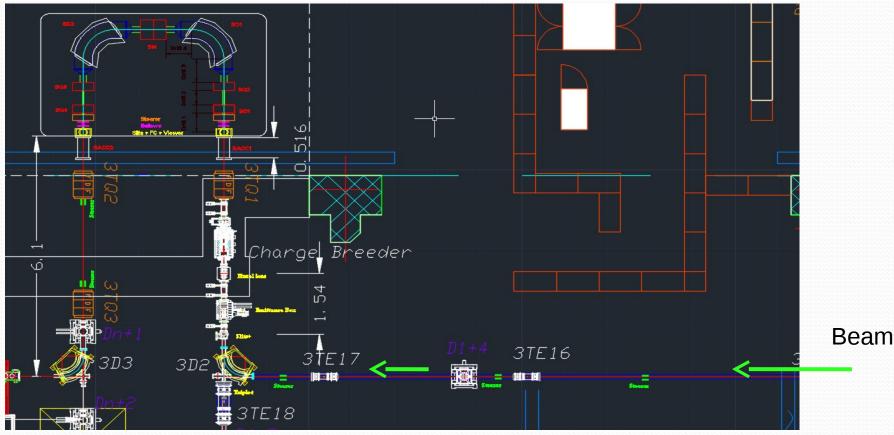


Transverse Gaussian distribution in the phase spaces, truncated at 3, while uniform in the longitudinal phase space with a 1 ev energy spread

Separation of 1/40000 with 1 eV energy spread

It is possible to obtain a resolution equal to 1/40000 if the slit at the of system will be close. The percentage of nominal beam which assure a clean beam is 53%.

Istituto Nazionale



The beam exit the HRMS is injected in the charge breeder, It increases the beam charge state and some contaminants are introduced.

The MRMS is required to clean up the beam.

Analysis of contaminants introduced by the charge Breeder. Purple cells show the critical resolution value. A resolution of 0.1 % is sufficient.

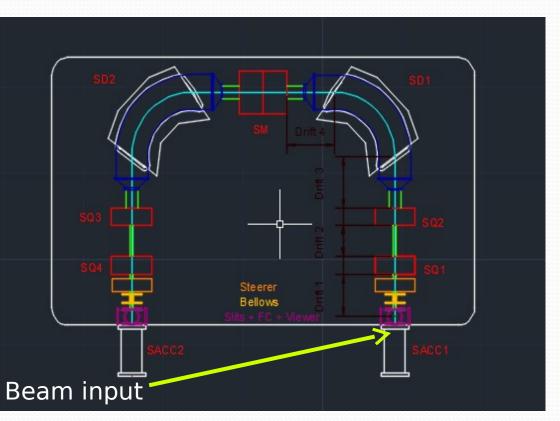
	CONTAMINANTS -			element	С	N	N	Ar	Ar	Kr	Kr	Kr	Kr	Kr	
				mass	13,003355	14,003074	15,000109	36,967546	39,962383	77,920397	79,916375	81,913483	77,920397	79,916	
	R	RADIOACTIVE IONS		charge	2+	2+	2+	5+	6+	11+	11+	11+	12	12	
	M	Replote Fire fords			6,5016774	7,001537	7,5000545	7,3935091	6,6603972	7,0836725	7,265125	7,4466803	6,4933664	6,6596	
	<u>element</u>	<u>ement</u> mass <u>charge</u> state		M/q	Resolution (%)										
	<u>Sn</u>	125,90765	18		(-	5,0218091				7,7233158	-	
	<u>Sn</u>	126,91036	18		ć			-	-	-	-2,953142			-	
	<u>Sn</u>	127,91054	18	7,1061409	9,2970396	1,4940139	-5,252142	-3,886763	6,6924502	0,317187	-2,188318	-4,573035	9,4369313	6,7036	
	<u>Sn</u>	128,91348	18	7,16186	10,154035	2,2898256	-4,509227	-3,133142	7,5290228	1,1037713	-1,42138	-3,824795	10,295023	7,5403	
	<u>Sn</u>	129,91397	18	7,2174426	11,008931	3,0836886	-3,768131	-2,381366	8,3635467	1,8884294	-0,656319	-3,078387	11,151014	8,3749	
	<u>Sn</u>	130,91198	18	7,2728879	11,861715	3,8755902	-3,028866	-1,631448	9,1960088	2,6711488	0,1068514	-2,333824	12,00489	9,2074	
	<u>Sn</u>	132,92383	18	7,3846572	13,5808	5,4719444	-1,538619	-0,119725	10,874127	4,2489933	1,6452879	-0,832895	13,726175	10,885	
	<u>Sn</u>	133,92829	18	7,4404606	14,439091	6,2689599	-0,79458	0,6350359	11,711965	5,0367673	2,4133866	-0,083523	14,585564	11,723	
	<u>Sn</u>	131,91782	18	7,3287676	12,721181	4,6736959	-2,283809	-0,875654	10,034993	3,4600005	0,8760008	-1,583427	12,865455	10,046	
	<u>Sn</u> 125,90765	125,90765	19	6,6267186	1,9232138	-5,353374	-11,64439	-10,37113	-0,505655	-6,450805	-8,787274	-11,0111	2,0536676	-0,495	
<u>Sn</u>	<u>Sn</u>	126,91036	19	6,6794926	2,7349129	-4,599624	-10,94075	-9,657342	0,2867014	-5,705795	-8,060871	-10,30241	2,8664056	0,2972	
	<u>Sn</u>	128,91348	19	6,78492	4,3564539	-3,093849	-9,535057	-8,231397	1,8696005	-4,21748	-6,609728	-8,886648	4,490022	1,8802	
Nominal beam	<u>Sn</u>	129,91397	19	6,8375772	5,1663558	-2,341769	-8,832966	-7,519189	2,6602022	-3,474119	-5,884934	-8,179525	5,3009606	2,6709	
NUTIIITAI DEATT	<u>Sn</u>	130,91198	19	6,8901043	5,9742567						-5,16193				
	<u>Sn</u>	131,91782	19	6,9430429	6,788487	-0,835446	-7,426767	-6,092725	12,68873	-10.89569	-1,985263	-4,433262	-6,763246	-7,888	
	<u>Sn</u>	132,92383	19	6,9959911	7,6028631	-0,079211	-6,720797	-5,376582	5,0386466	-1,237796	-3,704464	-6,052217	7,7405864	5,0496	
	<u>Sn</u>	133,92829	19	7,0488574	8,4159812	0,6758567	-6,015918	-4,661545	5,8323877	-0,491484	-2,976792	-5,342285	8,5547452	5,8435	
	<u>Sn</u>	128,91348	20	6,445674	-0,861369	-7,939157	-14,0583	-12,81983	-3,22388	-9,006606	-11,27924	-13,44232	-0,734479	-3,213	
	<u>Sn</u>	129,91397	20	6,4956984	-0,091962	-7,22468	-13,39132	-12,14323	-2,472808	-8,300414	-10,59069	-12,77055	0,0359125	-2,462	
	<u>Sn</u>	130,91198	20	6,5455991	0,6755438	-6,511969	-12,72598	-11,4683	-1,723592	-7,595966	-9,903834	-12,10044	0,8044007	-1,713	
· · · · · · · · · · · · · · · · · · ·	<u>Sn</u>	132,92383	20	6,6461915	2,2227199	-5,07525	-11,38476	-10,10775	-0,213286	-6,175906	-8,519241	-10,74961	2,3535571	-0,202	
	<u>Sn</u>	133,92829	20	6,6964145	2,9951821	-4,357936	-10,71512	-9,428468	0,5407684	-5,466909	-7,827952	-10,07517	3,1270079	0,5513	
	<u>Sn</u>	131,91782	20	6,5958908	1,4490627	-5,793674	-12,05543	-10,78809	-0,968507	-6,886	-9,211599	-11,42508	1,5789096	-0,958	
	Sn	125,90765	21	5,9956025	-7,783759	-14,36734	-20,05921	-18,90721	-9,981306	-15,36025	-17,4742	-19,48624	-7,665729	-9,971	
	<u>Sn</u>	126,91036	21	6,0433505	-7,049365	-13,68537	-19,42258	-18,26141	-9,264413	-14,6862	-16,81698	-18,84504	-6,930395	-9,254	
	Sn	127,91054	21	6,090978	-6,316823	-13,00513	-18,78755	-17,61723	-8,549328	-14,01384	-16,16142	-18,20546	-6,196916	-8,539	
															

Courtesy of Alessio Galatà

tituto Nazionale

Characteristics of the nominal beam at the entrance of the platform

MRMS Project requirement

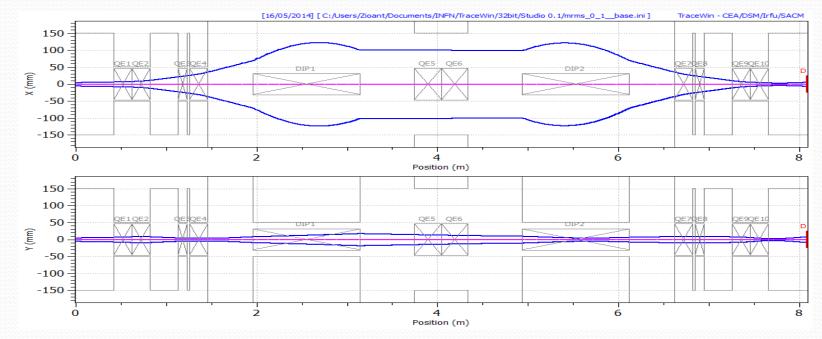

tituto Nazionale

Mass resolving power 0.1%

Nominal beam => 132Sn19+@3.04 Mev (40KV+120KV, extraction + platform voltage);

Norm. Emittance in x-x'=0.1 π *mm*mrad; Norm. Emittance in y-y'=0.1 π *mm*mrad;

Parameters						
Bending radius	750 mm					
Beam Energy	3.04 MeV					
Magnetic field A=132 q=19+	2 kGauss					
Bending angle	90°					
Entrance/exit angle	33,35°					
Pole gap	70 mm					
Pole width	400 mm					



Longitudinal beam dynamics

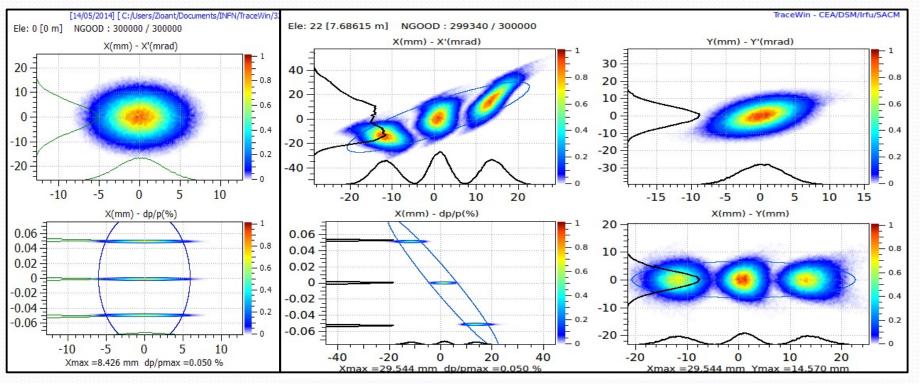
Istituto Nazionale

First order simulation: mass resolving power and beam envelope

$$\frac{\Delta p}{p} = \left|\frac{2X_0 M_{11}}{M_{16}}\right| \cong \frac{1}{4400}\% = 0.022\% \Rightarrow \frac{\Delta M}{M} \cong \frac{1}{2200} \qquad \text{In FWHM}$$

24/09/2015

Antonio Domenico Russo



Resolving power

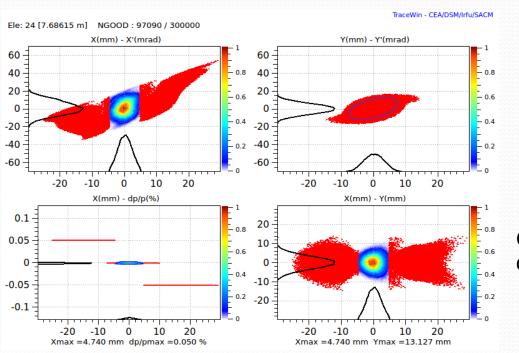
Transverse beam dynamics

Simulation of a beam with $\Delta M/M = 0.1\%$

Input

Output

Resolving power >1/1000


Antonio Domenico Russo

Resolving power

Transverse beam dynamics

Using a slit size equal to the 94 % of maximum beam size the particles loss are 1 %

Contaminants with $\Delta M/M=\pm 1/1000$ are $\approx 0\%$ of the selected beam

Conclusions

- MRMS Dipoles are commissioning;
- The study and design of MRMS was preparatory to the HRMS study;
- This kind of system are very sensitive to external variable, the errors study has been done, we are confident about the separator.