

Giroscopi Laser

Applicazione alla metrologia angolare

Nicolò Beverini

Ring Laser Gyroscope for accurate angle metrology and as demonstrator of self-calibration principle for Lense-Thirring effect measurements

INRIM

- Marco Pisani
- Milena Astrua

INFN – Sezione di Pisa

- Angela Di Virgilio
- Jacopo Belfi
 INFN LNL
- Antonello Ortolan
- Davide Cuccato

Dipartimento di Fisica – Università di Pisa

- Nicolò Beverini
- Giorgio Carelli
- Enrico Maccioni

Progetto premiale finanziato dal MIUR

The goal

- Realization of a mid-scale RL (50 90 cm), with a lightweight and stiff structure which can be placed on a precision rotating table -in combination with a precision autocollimator
- 1) Implementation of an extremely accurate transportable rotational standard for the calibrating the best angular measurement instrument, which resolution today is well beyond the traceability capabilities of most NMIs;
- 2) Realization of a very sensitive gyroscope for the measurement of seismic effects (S-wave phase velocity, Co-seismic rotations), and for the measurements of test mass acceleration in the next generation Earth based gravitational antennas (e.g. Virgo)
- 3) The demonstration of a self-calibration concept leading to the design of a larger rotating RL for geodetic and relativistic experiments, free from the need of extremely difficult dimensional measurements

Filatov's goniometer

Quantum Electronics 30(2) 141-146 (2000)

©2000 Kvantovaya Elektronika and Turpion Ltd

PACS numbers: 42.62.Eh; 42.55.Lt; 42.60.Da; 06.30.Bp DOI: 10.1070/QE2000v030n02ABEH001675

Development of new methods and means of dynamic laser goniometry

M N Burnashev, D P Luk'yanov, P A Pavlov, Yu V Filatov

Gyrolaser goniometer

$$f(t) = 4 \frac{A}{\lambda p} \Omega(t) \cos \theta = K \Omega(t)$$

$$N_{\phi} = \frac{1}{2\pi} \int_{t_0}^{t_1} f(t) dt = \frac{K}{2\pi} \int_{t_0}^{t_1} \Omega(t) dt = \frac{K}{2\pi} \phi$$

$$N_{2\pi} = \frac{1}{2\pi} \int_{t_0}^{t_0+T} f(t) dt = \frac{K}{2\pi} \int_{t_0}^{t_0+T} \Omega(t) dt = K$$

$$\phi = 2\pi \frac{N_{\phi}}{N_{2\pi}}$$
Self-calibration!

If K could be considered as a constant, the angle should be known with a precision limited only by the noise of the detector 5^{5}

Goniometro laser

6 - Counter

Filatov's goniometer

Goniometro laser

Gyrolaser a prismi

He-Ne Laser gyros

Small gyroscopes for navigation

- 3- or 4-mirror ring cavity design, with an optical path of the order of 10 40 cm
- Large FSR (comparable with Doppler width)
 robust transversal single-mode operation
- They need of a bias rotation or a dithering to avoid self-locking

Large apparatus integral to the ground

- Optical path larger than 4 m up to 100 m and more
- Biased by Earth rotation
- Small FSR II difficult single-mode operation
- Seismology, geodesy, length of the day, fundamental physics

Ring laser accuracy

$$f_{Sagnac} = 4 \frac{A}{\lambda p} (1 + k_A) \hat{n} \cdot (\vec{\Omega} + \vec{\Omega}_{\oplus}) + \Delta f_0 + \Delta f_{bs}$$

$$= k_s (1 + k_A) (\Omega \cos \theta + \Omega_{\oplus} \sin \gamma) + \Delta f_0 + \Delta f_{bs}$$
geometrical factor
atomic factor
atomic factor
Earth rotation
backscattering

$$N_{\phi} = \frac{1}{2\pi} \int_{t_0}^{t_1} f(t) dt = \frac{1}{2\pi} K \overline{\Omega} + \delta_{\phi}$$
$$N_{2\pi} = \frac{1}{2\pi} \int_{t_0}^{t_0 + T} f(t) dt = \frac{1}{2\pi} K \overline{\Omega} + \delta_{2\pi}$$

11

Linear term: Geometrical factor

$$f = \frac{k_s}{1 + k_A} \left(\Omega + \Omega_{\oplus} \sin \gamma \right) + \Delta f_0 + \Delta f_{bs}$$

• The geometrical factor $A/p \cos \vartheta$ must be kept stable better than 10⁻⁸ over the measuring time.

Linear change smaller than 10⁻⁸

- For a dilation coefficient of the structure ≈ 10⁻⁶/K, a temperature stability of 10⁻² K is required
 - \Rightarrow Wobble of the table lower than 10⁻⁴

Linear term: Atomic factor

$$f = k_s \left(1 + \frac{k_A}{k_A} \right) \left(\Omega + \Omega_{\oplus} \sin \gamma \right) + \Delta f_0 + \Delta f_{bs}$$

- The laser action is sensitive to changes of the discharge properties that can produce variation in the laser gain and in the plasma dispersion function.
 - Evolution of the discharge gas composition
 - Stability of the discharge power
- Control of the lab temperature, pressure, humidity
- Good stabilization of the discharge power and of the laser wavelength
- Control of wall outgassing through getter pumps
- Can be quite easily controlled on measurement time ≤ 100 s

Null-shift

 $f = k_{s} (1 + k_{A}) (\Omega + \Omega_{\oplus} \sin \gamma) + \Delta f_{0} + \Delta f_{hs}$

Non-reciprocity in the optical cavity

- *rf* discharge makes negligible asymmetries in the active medium.
- For an ideal ring laser the two counter-propagating laser beams would be identical both in size and in intensity.
- In practice, there have been found quite large differences in the intensities
- Large effect in total reflective prism cavities (*magnetic field effects due to the Verdet coefficient of the prism glass*)
- Also super-mirror cavities exhibit some minute effects (anisotropy in the reflection or birefringence in the super-mirror coating)

Null-shit measured in G-Pisa (1.35 m of side): 10⁻² Hz

- S This null-shift effect can be modeled and taken in account.
- Scheme Diagnostic: relative intensity of the two beams

Back-scattering

$$f = k_s (1 + k_A) (\Omega + \Omega_{\oplus} \sin \gamma) + \Delta f_0 + \Delta f_{bs}$$

Mirror backscattering couples together the two counter-propagating laser beams through a coupling parameter r: $r = \sum_{i} r_i \exp(2ikz)$

 \Rightarrow frequency pulling:

$$f = \sqrt{f_0^2 - l^2}$$
 for $f_0 > l = r/\pi$

 $l = r/\pi$ lock-in threshold frequency.

- By geometry $|r_i| \propto 1/L$
- Moreover, its effectiveness is directly related to the ratio between cavity line-width ($\propto 1/L$) and inversely related to the beams frequency difference (∝*L*).

r value can vary between $-\sum_{i} |r_i|$ and $\sum_{i} |r_i|$ for small perturbations in the ring geometry of the order of $\overline{\lambda}$

If
$$\Omega \gg \Omega_L (f_0 \gg l)$$
,
 $f = \sqrt{f_0^2 - l^2} \approx f_0 (1 - l^2 / f_0^2) = f_0 - \frac{l^2}{K\Omega}$
 $l \approx \frac{cs\lambda}{\pi dp} \approx \frac{100}{p}$ Hz

Primalov and Filatov, Sov. J. QE **7** 802 (1977) Yu.Filatov, *et al.* NATO RTO AG-339 (1999)

- K₁ scale factor
- K₀ null-shift
- K-1 back scattering

For $p = 2 \text{ m e } \Omega = 2\pi \cdot 0.1 \text{ Hz}$:

$$K_{1} = 4 \frac{A}{\lambda p} \cos \theta \approx \frac{L}{\lambda} \approx 8 \times 10^{5}$$
$$K_{-1} \approx \frac{l^{2}}{K_{1}^{0}} \approx \frac{\left(100 \text{ Hz}/2\right)^{2}}{8 \times 10^{5}} = 3 \times 10^{-3} \text{ Hz}^{2}$$

 $f^0 \approx 350 \, kHz$

$$\delta f_{bs} \approx \frac{3 \times 10^{-3}}{2\pi \cdot 10^{-1}} \text{Hz} \approx 5 \times 10^{-3} \text{Hz}$$
$$\frac{\delta f_{bs}}{f_0} \sim \frac{5 \times 10^{-3}}{350 \times 10^3} \approx 1.5 \times 10^{-8}$$
16

Earth rotation effect

$$f = K_1 \left(\Omega + \Omega_{\oplus} \sin \gamma \right) + K_0 + \frac{K_{-1}}{\left(\Omega + \Omega_{\oplus} \sin \gamma \right)}$$

Correction in K₋₁ is a small correction of a small term *Negligible!*

 Ω_{\oplus} is well known with high accuracy, but if Ω is not uniform:

$$\begin{split} \delta N_{\phi} &= \frac{1}{2\pi} \Biggl(K_1^0 \frac{\left(\Omega_{\oplus} \sin \gamma + K_0\right)}{\Omega^0} + \frac{K_0^0}{\Omega^0} + 2\frac{K_{-1}^0}{\left(\Omega^0\right)^2} \Biggr) \int_t^{t+\Delta t} \delta \Omega(t') dt' \\ &= \frac{1}{2\pi} \Biggl(K_1^0 \frac{\Omega_{\oplus} \sin \gamma}{\Omega^0} + \frac{K_0^0}{\Omega^0} + 2\frac{K_{-1}^0}{\left(\Omega^0\right)^2} \Biggr) \Bigl\langle \delta \Omega \Bigr\rangle \frac{\phi}{\Omega^0} \end{split}$$

First term is the dominant one:

With L=50 cm, $K_1 \Omega_{\oplus} \sin \gamma = 40$ Hz, while $K_0 \ll 1$ Hz

$$\delta\phi = 2\pi \frac{\delta N_{\phi}}{N_{2\pi}} \approx \frac{\Omega_{\oplus} \sin\gamma}{\Omega^0} \frac{\langle \delta \Omega \rangle}{\Omega^0} \phi$$

For $\Omega_0 = 2\pi \cdot 0.1 \text{ Hz}$, an angular accuracy of 10⁻⁸ rad (0.002") requires $\langle \delta \Omega \rangle / \Omega < 10^{-4}$

Quantum noise

$$\delta\Omega_{shot \ noise} = \frac{c(4L)}{4L^2 Q} \sqrt{\frac{hv}{P\tau}} = \frac{c}{LQ} \sqrt{\frac{hv}{P\tau}}$$

P output powerτ measurement time*Q* optical cavity quality factor

$$\delta\phi_{shot \ noise} = \frac{c}{LQ} \sqrt{\frac{hv \ \tau}{P}} \approx 12 \ \text{nrad} \\ \left(0.0025^{"}\right)$$

ABRS Air-Bearing Direct-Drive Rotary Stage

Resolution ⁽¹⁾		0.174 µrad (0.036		
		arc sec)		
Fundamental Encoder		18,000 lines/rev		
Resolution				
Max Speed ⁽²⁾		500 rpm		
Accuracy ⁽³⁾		<1 arc sec		
Bidirectional Repeatability		<1 arc sec		
Max Load ⁽⁴⁾	Axial	97 kg		
	Radial	51 kg		
	Tilt	45 N-m		
Axial Error Motion		<100		
(Synchronous)		<100 mm		
Radial Error Mot	tion	<250 pm		
(Synchronous)		N200 IIII		
Tilt Error Motion		<2.4 µrad (<0.5 arc		
(Synchronous)		sec)		
Axial Error Motion		<20 nm		
(Asynchronous)				
Radial Error Motion		<20 nm		
(Asynchronous)				
Tilt Error Motion		<0.2 µrad (<0.04 arc		
(Asynchronous)		sec)		

Width	300 mm	
Tabletop Diameter	278.1 mm	
Height	110 mm	

Basamento in fibra di carbonio

FLE WHE 18YTS OF 705/705/00 25 1 (PWB/#

WEIGHT

SHEET I OF I

SCALE

ANELES #XXX* 2 PL #XXXX 3 PL #XXXXX

Optical cavity design

Prisma di ricombinazione

L m	ƒ @ .1 Hz kHz	<i>f Earth*</i> Hz	FSR MHz	optical cavity Q^	q. noise nrad $\sqrt{\tau^{\$}}$	Δφ <i>b. s.</i> nrad
0,11	77,3	9,0	682	1,36×10 ¹¹	268	8650
0,50	351,3	40,8	150	6,20×10 ¹¹	12,1	20
0,90	632,4	73,4	83	1,12×10 ¹²	5,42	1,9
1,35	948,6	110,1	56	1,68×10 ¹²	1,65	0,04

* Calculated for the latitude of Turin (45°04')

^ Estimated total cavity losses 32 ppm

\$ τ=5s

