

control of ring laser gyroscopes for the accurate estimate of the Earth rotation

Davide Cuccato, DEI-INFN. November, 18th 2014.

Presentation Outline

Introduction

- > Ring Laser Dynamics: 1.
- Model
- 2. Rotational frequency estimation
- 3. Results
- > Optical Cavity Geometry:
- 1. Beams position computation
- 2. Pose & Shape decomposition
- 3. Simulation results
- > **RLG simulator:** 1. Simulator overview
 - 2. GP2 case study
- > Conclusions

Introduction

- Small Size: (5-50 cm) Inertial Guidance
- Medium Size: (1-5 m) Geophysics, Seismology, Metrology
- Large Size: (5-10 m) Geodesy, Geophysics
- > GINGER: Gyroscope IN GEneral Relativity

Introduction: Active Sagnac Interferometry

- Laser light excited inside a polygonal optical cavity
- Two electromagnetic waves travelling in opposite directions
- The frequency split between opposite travelling waves is mainly due to rotation.

Ring Laser dynamics: Model

$$\dot{E}_{1} = (\alpha_{1} + i\omega_{s})E_{1} + r_{2}e^{i\varepsilon}E_{2} - f_{1}(I_{1}, I_{2})E_{1}$$

$$\dot{E}_{2} = (\alpha_{2} - i\omega_{s})E_{2} + r_{1}e^{i\varepsilon}E_{1} - f_{2}(I_{1}, I_{2})E_{2}$$

Where
$$\begin{cases} I_{1,2} = |E_{1,2}^2| & S = |E_1 + E_2|^2 \\ f_{1,2}(I_1, I_2) = \beta I_{1,2} + (\Theta + i\tau) I_{2,1} \end{cases}$$

 $E_{1,2}(t)$ are linearly coupled through

And non-linearly coupled through

Ring Laser dynamics: Model

The Ring Laser dynamics in compact from:
$$\mathbf{\dot{E}} = \begin{bmatrix} \mathbf{A} - \mathscr{D}(\mathbf{E}) . \mathbf{B} . \mathscr{D}(\mathbf{E}^*) \end{bmatrix} \mathbf{E}$$

- The matrices $\mathbf{A} \equiv \frac{c}{L} \mathbf{P}^{(0)} \mathbf{M}$ and $\mathbf{B} \equiv \frac{c}{L} \mathbf{P}^{(2)}$ are given by
 - **Atomic Polarization:**

Dissipative Effects

- Active medium= He-Ne isotopic mixture.
- Non Linear Coupling.
- Can be computed using QED. \triangleright
- Related to cavity mirrors \triangleright transmission, absorption and scattering.
- Linear Coupling. \geq
- Sagnac effect.

Ring Laser dynamics: Rotational frequency estimation

Dissipative parameters identification:

- Perturbative solutions of the RL dynamics
- Pre-filtering for electronic noise rejection

- Polarization computation with Lamb model
- Additional spectroscopic diagnostics

Extended Kalman Filter for laser systematic subtraction and rotational frequency estimation.

Fig. 5 Comparison of the backscattering (blue) estimated from the intensity channels with the residuals of the Sagnac frequency (red) estimated from the interferogram channel. Note that they correlate on the micro-hertz scale.

Optical Cavity geometry: Beams position computation

Task: Find the laser beams position for a given cavity configuration

Formalism: Geometric Optics

Problem Data: > 4 Points in \mathbb{R}^3 , The spherical mirrors C.O.C. \mathbf{c}_k

> 4 positive scalars in \mathbb{R} , the spherical mirrors R.O.C. r_k

Problem variables: > 4 Points on the Unit Sphere \mathbb{S}^2 , i.e. a point of the Oblique Manifold 2x4.

$$X = (\mathbf{x}_1, \dots, \mathbf{x}_4) \in \mathcal{OB}(2, 4)$$

Laser spot virtual positions: $\mathbf{z}_k = \mathbf{c}_k + r_k \mathbf{x}_k$

To find the beams position, the Fermat's Principle (stationarity of the optical path length) is used:

grad p(X; C, R) = 0

Optical Cavity geometry: beams position computation

Optical Cavity geometry: Pose & Shape Decomposition

The matrix $\cdot C$ accounts for both the pose and the shape of the mirrors

Optical Cavity geometry: Pose & Shape Decomposition

The isosceles trapezoids:

$$\mathcal{T} = \left\{ \begin{bmatrix} a_1 & b & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 3}, a_1, a_2 \in \mathbb{R}^+, b \in \mathbb{R} \right\}$$

The irregular quadrilaterals:

$$\mathcal{V} = \mathbb{R}^3 \setminus \left\{ \mathbf{e}_1 + \alpha \mathbf{e}_2, -\mathbf{e}_2 + \beta \mathbf{e}_1, \frac{\mathbf{e}_1 - \mathbf{e}_2}{2} + \gamma \left(\mathbf{e}_1 + \mathbf{e}_2 \right), \, \alpha, \beta, \gamma \in \mathbb{R} \right\},\$$

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Optical Cavity geometry: Pose & Shape Decomposition

Optical Cavity geometry: Pose & Shape Decomposition

Optical Cavity geometry: Pose & Shape Decomposition

Optical Cavity geometry: Results

Optical Cavity geometry: Results

Optical Cavity geometry: Results

RLG Simulator: Overview

RLG Simulator: Overview

RLG Simulator: GP2 case study

RLG Simulator: GP2 case study

RLG Simulator: GP2 case study

Conclusions

- Ring laser dynamics effects on the accuracy rotational frequency estimation reviewed
- Offline procedure for the subtraction of laser systematics designed and demonstrated
- Geometric Newton algorithm for the computation of the beams position in the optical cavity designed and demonstrated
- Pose & Shape decomposition of a square optical cavity proposed
- RLG Simulator of all the relevant processes involved in the Ring Laser operation developed

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZI	IONE	Collaboration	
DEI	Alessandro Beghi Davide Cuccato Alberto Donazzan Giampiero Naletto	University of Canterbury New Zealand	Robert Hurst Geoff Stedman Robert Thirkettle Jon-Paul Wells
INFN (PI, LNL)	Jacopo Belfi Angela Di Virgilio Antonello Ortolan	LMU München Germany	Celine Hadziioannou Heiner Igel Maria Nader
University of Pisa	Nicolo Beverini Giorgio Carelli Enrico Maccioni Rosa Santagata	TUM, BKG (Wettzell) Germany	Joachim Wassermann Andre Gebauer Thomas Klügel Ulrich Schreiber
CNR (PD, NA)	Maria G. Pellizzo Alberto Porzio	TUE (Eindhoven) Holland	Alexander Velikoseltsev Alessandro Saccon
Politecnico (Torino)	Matteo L. Ruggero Angelo Tartaglia		and many more

The End

