GINGER External Metrology System (GEMS)

Meeting presentation 02/02/2015

Alberto Donazzan¹

M. G. Pelizzo² G. Naletto¹

¹Dipartimento di Ingegneria dell'Informazione, Università di Padova (PD) ²Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie (PD)

GEMS requirements

Geometry locking:

Scale factor has to be held constant to much better than 1 part in 10^{10}

↓

Mirror relative *position* and *orientation* should be accurate to better than 1nm and 1nrad

Octahedron: 6 x 3 DoF = 18 DoF

- **Rigid body translations: 3 DoF**
- Rigid body rotations (calibration): 3 DoF
- **12 remaining DoF to be removed, possibly by monitoring:**
	- o ring-laser cavities' perimeters
	- o diagonal cavities' lengths
	- o polyhedral edges with **External Metrology System**

BEAM-LAUNCHER

Heterodyne interferometer

Two spatially isolated beams:

- Reference beam (inner)
- Racetrack beam (outer)
- Beat signals at frequency ∆f
- Distance is given by phase difference between REF and RACETRACK beats

$$
\Delta \Phi = 2 \cdot \frac{2\pi}{\lambda} \Delta L
$$

LASER Source & Absolute Distance Measurement

- Two colors LASER source: $f_2 f_1 \sim 10$ GHz
- **AOMs alternate between the two** laser outputs, hence ∆φ is measured at two different λ and it is possible to deduce the absolute distance.
- In the "relative metrology" mode the switching is stopped and only one laser is continuously selected to feed the frequency shifters.

CHALLENGES

Reference and measurement paths have to match exactly (keeping separate), except for racetrack!

Avoid:

- Mechanical displacements, vibrations
- Refractive index variations: Temperature gradients Air turbulence
- Optical " cross-talk": Mixing of REF and RACETRACK beams due to diffraction and misalignments
- Source instability: Frequency (phase) noise

Optical Layout Monitoring and Control

- **I** Identify minimum number of required distances
- Integration with other measuring techniques (diagonals, perimeters, …)
- Geometry estimate and control

Electronics

- Low phase noise
- **Linearity**

Mechanics

Integration with GINGER:

fiducials, vacuum systems, …

GEMS Prototype (GEMS-P)

GOALS

Evaluate parts behavior,

alignment issues,

links between single components and overall system performances

FEATURES

- **Filte-space source, Fiber ready (compactness!)**
- NO absolute metrology source
- **Vibration isolated optical table**
- In-air environment

.........................

ROADMAP (1st year)

• Study and characterization of the LASER heterodyne interferometer

- Definition of parts requirements
- Purchase

• Prototype assembly, alignment and test

• Prototype evaluation

MATLAB simulation of beats from two (noisy) sine waves

1. Build (noisy) sine waves:

$$
A_{1n} \cdot \sin(2\pi f_{1n}t) = (A_1 + \alpha_{1n}) \cdot \sin[2\pi (F_1 + f_{1n}) \cdot t]
$$

 $= (A_1 + \alpha_{1n}) \cdot \sin[2\pi F_1 t + 2\pi f_{1n} t]$

 $\alpha_n \sim \mathcal{N}(0, \sigma_A)$ is a white gaussian amplitude noise $f_n \sim \mathcal{N}(0, \sigma_f)$ is a white gaussian frequency noise $\Box \longrightarrow 2\pi f_n t$ is a red phase noise*

- 2. Sum them and check beating visibility
- 3. Forward time-shift (equal length path, racetrack)
- 4. Compute power spectrum

* red noise is generated by integrating white noise

SHORT coherence length

UNCORRELATED noises

- **Two independent LASERs sources and/or**
- Independently driven AOMs

CORRELATED noises

 One splitted LASER source and same AOMs' driver

LONG coherence length

With both UNCORRELATED and CORRELATED noises, visibility never worsens

Required parts

Single-frequency LASER source

- $-532nm$
- \cdot >100 mW (lab upgrade required)
- <1Mhz linewidth
- thermal and mechanical stabilization
- \blacksquare free-space output + fiber coupler

■ 2x AOMs

- VIS spectral range
- free-space input/output
- driver with double RF output

2x Photodiodes

- VIS spectral range
- \sim >10MHz bandwidth
- **Example integrated Transimpedance amplifier**

Backup Slides

Laboratory resources at CNR-IFN (1)

Large Vacuum chamber Cleanroom 46sqm:

- Area 1 (ISO7 class), pre-cleanroom area
- Area 2 (ISO6 class), 23 sqm

Laboratory resources at CNR-IFN (2)

NASA's SIM External Metrology

NASA's KITE experiment

