

## The Mu2e experiment





S. Miscetti Laboratori Nazionali di Frascati on behalf of the Mu2e Collaboration

University of Rome "La Sapienza" 8/6/2015





- The Physics

   →CLFV processes
   →BSM Reach: Mu2e vs MEG
- Description of Muonic Atom processes
- Experimental technique
- Accelerator Complex
- Detector Layout
- Status of Mu2e experiment
- INFN contribution
- Conclusions







### CLFV processes

- Muon-to-electron conversion is a charged lepton flavor violating process (CLFV) similar but complementary to other CLFV processes as  $\mu \rightarrow e\gamma$  and  $\mu \rightarrow 3e$ .
- The Mu2e experiment searches for muon-to-electron conversion in the coulomb field of a nucleus:  $\mu A \to e A$
- CLFV processes are strongly suppressed in the Standard Model

 $\rightarrow$  In principle, not forbidden due to neutrino oscillations

→ In practice BR( $\mu \rightarrow e\gamma$ ) ~ 10<sup>-54</sup> is negligible in the SM!

New Physics could enhance CLFV rates to observable values











### **CLFV** history









### Mu2e physics reach & goal











If SUSY seen at LHC  $\rightarrow$  rate ~10^{-15}

Implies ~ 40-50 signal events with negligible background in Mu2e for many SUSY models.

SUSY GUT in an SO(10) framework  $\mu N \rightarrow eN$  (tan $\beta$  = 10) Neutrino-Matrix Like (PMN Minimal Flavor Violation (Cl



L. Calibbi et al., hep-ph/0605139

# Complementary with the LHC experiments while providing models' discrimination



M.Blanke, A.I.Buras, B.Duling, S.Recksiegel, C.Tarantino,



| ratio                                                                                     | LHT                | MSSM (dipole)         | MSSM (Higgs)          |        |
|-------------------------------------------------------------------------------------------|--------------------|-----------------------|-----------------------|--------|
| $\frac{Br(\mu^-{\rightarrow}e^-e^+e^-)}{Br(\mu{\rightarrow}e\gamma)}$                     | 0.021              | $\sim 6\cdot 10^{-3}$ | $\sim 6\cdot 10^{-3}$ |        |
| $\frac{Br(\tau^-{\rightarrow}e^-e^+e^-)}{Br(\tau{\rightarrow}e\gamma)}$                   | 0.040.4            | $\sim 1\cdot 10^{-2}$ | $\sim 1\cdot 10^{-2}$ |        |
| $\frac{Br(\tau^-\!\!\rightarrow\!\!\mu^-\mu^+\mu^-)}{Br(\tau\!\rightarrow\!\!\mu\gamma)}$ | 0.04 0.4           | $\sim 2\cdot 10^{-3}$ | 0.060.1               | arX    |
| $\frac{Br(\tau^-{\rightarrow}e^-\mu^+\mu^-)}{Br(\tau{\rightarrow}e\gamma)}$               | 0.04 0.3           | $\sim 2\cdot 10^{-3}$ | 0.020.04              | iv:090 |
| $\frac{Br(\tau^-\!\rightarrow\!\mu^-e^+e^-)}{Br(\tau\!\rightarrow\!\mu\gamma)}$           | 0.04 0.3           | $\sim 1\cdot 10^{-2}$ | $\sim 1\cdot 10^{-2}$ | 9.545  |
| $\frac{Br(\tau^-{\rightarrow}e^-e^+e^-)}{Br(\tau^-{\rightarrow}e^-\mu^+\mu^-)}$           | 0.82.0             | $\sim 5$              | 0.3 0.5               | 4v2[he |
| $\frac{Br(\tau^-{\rightarrow}\mu^-\mu^+\mu^-)}{Br(\tau^-{\rightarrow}\mu^-e^+e^-)}$       | $0.7.\dots 1.6$    | $\sim 0.2$            | 510                   | [hd-d  |
| $\frac{R(\mu \mathrm{Ti} \rightarrow e \mathrm{Ti})}{Br(\mu \rightarrow e \gamma)}$       | $10^{-3}\dots10^2$ | $\sim 5\cdot 10^{-3}$ | 0.080.15              |        |

Table 3: Comparison of various ratios of branching ratios in the LHT model (f = 1 TeV) and in the MSSM without [92, 93] and with [96, 97] significant Higgs contributions.

### Relative rates are model dependent

Measure ratios to pin-down theory details

tituto Nazionale Eisica Nucleare





Muon to electron conversion is a unique probe for BSM:

- Broad discovery sensitivity across all models:
  - $\rightarrow$  Sensitivity to the same physics of MEG but with better mass reach
  - $\rightarrow$  Sensitivity to physics that MEG is not
  - → If MEG observes a signal, MU2E does it with improved statistics.
    Ratio of the BR allows to pin-down physics model
  - → If MEG does not observe a signal, MU2E has still a reach to do so. In a long run, it can also improve further with the proton improvement plan (PIP-2) .. instead of Project-X

 Sensitivity to λ (mass scale) up to hundreds of TeV beyond any current existing accelerator









### **Experimental Technique**



 $\Box$  Low momentum  $\mu$  beam (< 100 MeV/c) High intensity "pulsed" rate  $\rightarrow$  10<sup>10</sup>/s muon stop on AI. target  $\rightarrow$  1.7 µsec micro-bunch □ Formation of muonic atoms that can make a: **Muon Capture Process** Decay in Orbit (DIO) (BR=61%)(BR=39%)**Conversion Process** 4I<sup>27</sup> 1S Orbit Nuclear Recoil Lifetime = 864ns The conversion process results in a clear signature of a single electron, CE, with a mono-energetic spectrum close  $E_e = m_\mu c^2 - (B.E.)_{1S} - E_{recoil}$ to the muon rest mass  $= 104.96 \, {\rm MeV}$ 





- Bound muon cascades quickly to 1s ground state (emits X-rays)
- Bohr radius of ground state:

$$a_0 \sim \frac{1}{m} \frac{\hbar^2}{Ze^2}$$























- Muon decay in orbit (DIO)
- Radiative pion capture (RPC)  $\pi^{-}N \rightarrow \gamma N', \gamma \rightarrow e^{+}e^{-} \text{ and } \pi^{-}N \rightarrow e^{+}e^{-}N'$
- Antiprotons: produce pions when they annihilate in the target .. antiprotons are negative and they can be slow!
- Pion/muon decay in flight
  - Electrons from beam
  - Cosmic rays

...



### **DIO** background



## □ The DIO background is the most difficult one.

Electron energy distribution from the decay of bound muons is a (modified) Michel spectrum:

→ Presence of atomic nucleus and momentum transfer create a recoil tail with a fast falling slope close to the endpoint

→ To separate DIO
 endpoint from
 CE line we need a high
 Resolution Spectrometer



Czarnecki et al., Phys. Rev. D 84, 013006 (2011) arXiv: 1106.4756v2





#### The trick is ... muonic atomic lifetime >> prompt background

Need a pulsed beam to wait for prompt background to reach acceptable levels! Fermilab provides the beam we need !



#### Proton extinction between pulses $\rightarrow$ # protons out of beam/# protons in pulse

# achieving 10<sup>-10</sup> is hard; normally get 10<sup>-2</sup> – 10<sup>-3</sup>

- Internal (momentum scraping) and bunch formation in Accumulator
- External: oscillating (AC) dipole
  - high frequency (300 KHz) dipole with smaller admixture of 17th harmonic (5.1 MHz)
  - Sweep Unwanted Beam into collimators

Calculations based on accelerator models That take into account collective effects Shows that this combination gets ~  $10^{-12}$ 





### **Accelerator Scheme**



- Booster: batch of 4×10<sup>12</sup> protons every 1/15<sup>th</sup> second
- Booster "batch" is injected into the Recycler ring
- Batch is re-bunched into 4 bunches
- These are extracted one at a time to the Debuncher/Delivery ring
- As a bunch circulates, protons are extracted to produce the desired beam structure
- Produces bunches of ~3x10<sup>7</sup> protons each, separated by 1.7 µs (debuncher ring period)





### Muon campus: g-2 and Mu2e













### **Muon Beam-line**



#### Production Target / Solenoid (PS)

- 8 GeV Proton beam strikes target, producing mostly pions
- Graded magnetic field contains backwards pions/muons and reflects slow forward pions/muons



- ightarrow Heat and radiation shielding
- $\rightarrow$  Tungsten target.

#### Transport Solenoid (TS)

Selects low momentum, negative muons Antiproton absorber in the mid-section

#### Target, Detector and Solenoid (DS)

- Capture muons on Al target
- Measure momentum in tracker and energy in calorimeter
- CRV to veto Cosmic Rays event





#### **Protons enter opposite to outgoing muons:** This is a central idea to remove prompt background





### **Transport Solenoid**





### **Detector Solenoid**





For the sensitivity goal  $\rightarrow$  ~ 6 x 10<sup>17</sup> stopped muons

#### For 3 year run , 6 x $10^7 \sec \rightarrow 10^{10}$ stopped muon/sec

tituto Nazionale Eisica Nucleare







- Tracker is made of arrays of straw drift tubes (red/blue stripes in tracker stations)
- ~ 20000 tubes arranged in planes on stations,
- the tracker has 18 stations.



 Tracking at high radius ensures operability (beam flash produces a lot of low momentum particles, large DIO background. Most of this background miss the tracker.)







Straw tube



Characteristics:

- 5mm diameter and 334-1174 mm length
- 25 μm W sense wire (gold plated) at the center
- 15 microns Mylar wall
- Must operate in vacuum

#### Straw tubes

- Proven technology
- Low mass  $\rightarrow$  minimize scattering (track typically sees ~ 0.25 % X<sub>0</sub>)
- Modular, connections outside tracking volume
- Challenge: straw wall thickness (15 μm) never done before



### Tracker: first panel prototype





Electrical and vacuum test in progress

Stefano Miscetti - Universita' La Sapienza



### **Calorimeter System**



#### **Calorimeter requirements:**

- → Particle Identification to distinguish e/mu
- ightarrow Seed for track pattern recognition
- $\rightarrow$  Tracking independent trigger
- $\rightarrow$  Work in 1 T field and 10<sup>-4</sup> Torr vacuum
- $\rightarrow$  RadHard up to 30 krad, 10<sup>12</sup> n/cm<sup>2</sup>/year

#### **Calorimeter choice:**

#### High granularity crystal based calorimeter with:

- $\rightarrow$   $\sigma/E$  of O(5%) and Time resolution < 500 ps
- $\rightarrow$  Position resolution of O(1 cm)
- → almost full acceptance for CE signal @ 100 MeV

### Disk geometry

- Square crystals
- Charge symmetric, can measure  $\mu^- N \rightarrow e^+ N$

Two disks separated by  $\frac{1}{2}$  wavelength (70 cm)







- Add search of an Helix passing through cluster and selected hits + use calorimeter time to calculate tracking Hit drift times.
  - → Reduce the wrong drift sign assignments i.e. **smaller positive momentum tail**



### Cosmic Rays are a problem







•

•





**CRV-D** Four layers of extruded plastic scintillator Fiber/SiPM readout (neutron damage is an issue) Al and concrete shielding CRV-L Front-end board enclosur CRV-T 20.0 [0.787\*] 381.0 100.0 [3.937\*] = 2.0 [0.079\*] [15,000\* 859.0 (33.819\* CRV-R CRV-U Correlated hits are a concern Desired number of bkg: 0.05 Required CR veto inefficiency 10<sup>-4</sup>



### **Basic reconstruction scheme**



reconstructable tracks DIO Rate (Arbitrary Units) M., 0.01 0<sub>0</sub> 50 100 Electron Energy (MeV) no hits in tracker some hits tracker, tracks not reconstructable.

beam's-eye view of the tracker




# Pattern Recognition based on **BABAR Kalman Filter algorithm**

No significant contribution of mis-reconstructed background

#### **Momentum resolution**

core σ~120 keV tail σ~175 keV (2.5%)



-600

-400

-200

0

200

400

600

X-y view

400

200

-200

-400

-600

NFN

stituto Nazionale li Eisica Nucleare



8/6/2015

## "fake" CE from CR events







- □ A long MC production used to optimize the CRV geometry by generating the same amount of cosmics that will cross the detector in MU2E running period.
- □ few events evaded the CRV, passing closely enough to the target, were tracked by the tracker and passed all reconstruction tracking criteria. They were all  $\mu^- \rightarrow$  rejected due to the combination of Calorimeter and tracking information : timing and E/p





#### (assuming ~ 10 GHz muon stops, $6x10^{17}$ stopped muons in $6x10^7$ s of beam time)

| Category      | Background process                 | E     | Estimated yield           |  |  |
|---------------|------------------------------------|-------|---------------------------|--|--|
|               |                                    |       | (events)                  |  |  |
|               |                                    |       |                           |  |  |
| Intrinsic     | Muon decay-in-orbit (DIO)          |       | $0.199 \pm 0.092$         |  |  |
|               | Muon capture (RMC)                 |       | $0.000^{+0.004}_{-0.000}$ |  |  |
| Late Arriving | Pion capture (RPC)                 |       | $0.023 \pm 0.006$         |  |  |
|               | Muon decay-in-flight (µ-DIF)       |       | < 0.003                   |  |  |
|               | Pion decay-in-flight ( $\pi$ -DIF) | 0     | $0.001 \pm < 0.001$       |  |  |
|               | Beam electrons                     |       | $0.003 \pm 0.001$         |  |  |
| Miscellaneous | Antiproton induced                 |       | $0.047 \pm 0.024$         |  |  |
|               | Cosmic ray induced                 |       | $0.092 \pm 0.020$         |  |  |
|               |                                    | Total | $0.37 \pm 0.10$           |  |  |

#### Discovery sensitivity accomplished by suppressing backgrounds to < 0.5 event total

Upper Limit < 6 x 10<sup>-17</sup> @ 90% C.L.









## Mu2e Collaboration





- ~185 Collaborators, 32 Institutions, 3 +2 Countries
- Still growing. Discussion with several USA university groups.
- 2 UK groups joining: UCL(M.Lancaster), Liverpool(T.Bowcock)
- HZDR Dresda joining (A.Ferrari)

### Dresda groups joined @ April CM, UK in 2016



### Mu2e TDR





#### http://mu2e.fnal.gov/

#### TDR available at http://arxiv.org/abs/ 1501.05241





- CD2 for detectors (baseline/TDR) obtained on the 5<sup>th</sup> of March 2015
- CD3b for Civil Construction and start for TS Bid obtained on same date.
- Final signatures from DOE done:
  - $\rightarrow$  Procurement of Superconducting cables in progress
  - $\rightarrow$  Bid for DS/PS assigned to General Atomics
  - $\rightarrow$  Bid for TS completed. Expected output on May 2015
  - → Civil Construction started: **Ground Breaking Cerimony Apr. 18**.
- CD3 for detectors planned for spring 2016
- Overall DOE budget secured, 274 M\$.



Stefano Miscetti - Universita' La Sapienza











## Status of Magnetic System





□ The Super Conducting magnets are the heart of MU2E Apparatus
 □ PS and DS bid is over. They will be built by General Atomics, USA
 □ TS prototype manufactured by ASG Superconductors, Genova
 □ TS proto @ FNAL since December 2014, under test now
 □ TS BID in progress → expect to know the final choice in 1 month



## Mu2e project schedule









### **Project-X re-imagined to match Budget constraints:**

#### 1) PIP-2 plans:

- $\rightarrow$  1 MW at LNBF at start (2025)
- $\rightarrow$  2 MW at regime at LNBF

#### $\rightarrow$ x 10 at Mu2e

Projectx-docdb.fnal.gov/cgi-bin/ ShowDocument?docid=1232 CLVF-snowmass  $\rightarrow$  Arxiv.1311.5278 Mu2e-2  $\rightarrow$  Arxiv.1307.1168v2.pdf

# 2) Depending on the beam Structure available:

→ study Z dependence
 if signal is observed
 3) If no signal is observed

Use x 10 events in Mu2e-2

Minor modifications of the detector  $\rightarrow$  BR < 6 x 10<sup>-18</sup>

V. Cirigliano, R. Kitano, Y. Okada, P. Tuzon., arXiv:0904.0957 [hep-ph] Phys.Rev. D80 (2009) 013002



Figure 3: Target dependence of the  $\mu \rightarrow e$  conversion rate in different single-operator dominance models. We plot the conversion rates normalized to the rate in Aluminum (Z = 13) versus the atomic number Z for the four theoretical models described in the text: D (blue), S (red),  $V^{(\gamma)}$  (magenta),  $V^{(Z)}$  (green). The vertical lines correspond to Z = 13 (Al), Z = 22 (Ti), and Z = 83 (Pb).











#### Strong involvement of INFN group in two items:

(1) Calorimeter system: project leadership, design & construction of proto, FEE and mechanics, Laser system.
(2) Construction of prototypes for the TS magnet done by INFN Genova (via ASG superconducting). Test of Superconducting cables.

#### **INFN group size extrapolated to 2017**

→ 30 people, O( 20 FTE)

### INFN financial contribution so far:

- **500** kEuro for construction of TS proto
- □ 400 kEuro R&D calorimeter and I-tracker

### **Expected Core contribution O( 3 MEuro )**

### Next steps $\rightarrow$ INFN CTS





# **Calorimeter Layout**



# The Calorimeter consists of two disks with 1650 square crystals (30x30x200) mm<sup>3</sup>

- **R**<sub>IN</sub> = 351 mm,  $R_{OUT}$  = 660 mm Depth = 10 X<sub>0</sub> (200 mm)
- Each crystal readout by two APDs (9x9 mm<sup>2</sup>)
   (3300 total) for redundancy and NCE x-check
- Analog FEE and digital electronics located in near-by electronics crates
- Radioactive source and laser systems provide absolute calibration as well as fast and reliable monitoring capability.







# **Crystal Choice**



|                                      | LYSO | BaF <sub>2</sub> | CsI  |  |  |
|--------------------------------------|------|------------------|------|--|--|
| Radiation Length X <sub>0</sub> [cm] | 1.14 | 2.03             | 1.86 |  |  |
| Light Yield [% NaI(Tl)]              | 75   | 4/36             | 3.6  |  |  |
| Decay Time[ns]                       | 40   | <b>0.9</b> /650  | 20   |  |  |
| Photosensor                          | APD  | R&D APD          | SiPM |  |  |
| Wavelength [nm]                      | 402  | <b>220</b> /300  | 310  |  |  |

| LYSO CDR                                                                                                                                                                                      | Barium Fluoride                                                                                                                                                                                                                                                                                                                  | Csl(pure)                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Radiation hard,<br/>not hygroscopic</li> <li>Excellent LY</li> <li>Tau = 40ns</li> <li>Emits @ 420 nm,</li> <li>Easy to match to<br/>APD.</li> <li>High cost &gt; 40\$/cc</li> </ul> | <ul> <li>(BaF<sub>2</sub>)</li> <li>Radiation hard, not hygroscopic</li> <li>very fast (220 nm) scintillating light</li> <li>Larger slow component at 300 nm. should be suppress for high rate capability</li> <li>Photo-sensor should have extended UV sensitivity and be "solar"-blind</li> <li>Medium cost 10\$/cc</li> </ul> | <ul> <li>Not too radiation<br/>hard</li> <li>Slightly hygroscopic</li> <li>20 ns emission time</li> <li>Emits @ 320 nm.</li> <li>Comparable LY of fast<br/>component of BaF<sub>2</sub>.</li> <li>Cheap (6-8 \$/cc)</li> </ul> |







A Caltech/JPL/RMD consortium formed to develop a Large area RMD APD into a super-lattice APD with high Q.E. @ 220 nm incorporating also an Atomic Layer Deposition antireflection filter to reduce efficiency for wavelength > 300 nm.



Stefano Miscetti - Universita' La Sapienza



# R&D on CsI(pure) crystals



- 4+7 crystals from Kharkov (ISMA) + 2 from Optomaterial (Italy) received in April.
- Improved transmittance and uniformity w.r.t. first SICCAS (China) production
- Measurement of time resolution done (from 1 to 5 ns WF sampling) → 420 ps/MIP (22 MeV)
- 10 MPPC new generation TSV received.











- Test beam done @ BTF with 3x3 Csl matrix and 9 new UV extended TSV Hamamatsu MPPC
  - $\rightarrow$  7% energy resolution
  - $\rightarrow$  260 ps resolution obtained at 50 ° incidence angle.
- Concluding the radiation hardness program for CsI crystals and MPPC with neutrons at FNG.
- Radiation hardness with TID OK (-20/30% at 90 krad)
- Technology Choice Review set for end of July.

 $\rightarrow$  BaF<sub>2</sub> vs CsI to freeze the engineering design



Istituto Nazionale di Eisica Nucleare





- The Mu2e experiment is a CLVF first-class experiment looking for physics BSM with high complementarity to other programs while increasing reach and diversification in models testing.
- MU2E will improve previous conversion experiment of 4 orders of magnitude and probe mass scales up to hundreds of TeV.
- < 10 years Timeline for completion of first phase.</li>
- Mu2e has completed the CD-2 and CD3 for the long lead items
  - $\rightarrow$  Construction of the solenoids will start next year.
  - $\rightarrow$  Detector Review at end of 2015 to freeze detector with CD3 in 2016
  - → INFN mainly involved on calorimeter construction and follow up of TS construction.
  - $\rightarrow$  INFN CTS review will be done during this year
  - $\rightarrow$  Construction period 2016-2018 followed by installation in 2019
- A longer term plan is being discussed.
- a Mu2e-2 phase being planned for a (x 10) increase in intensity and sensitivity!





Additional Material







- Similar capabilities as physics reach
- □ COMET designed to operate at 56 kW, Mu2e 8 kW
  - $\rightarrow$  COMET will use all JPARC beam
  - $\rightarrow$  Mu2e runs simultaneously with neutrino beam
- □ Final bend after COMET stopping target efficiently transmits conversion e- and provides rate suppression in detector.
- □ It does not transmit positrons (no  $\mu$ - $N \rightarrow e$ +N)
- COMET solenoids ~ 10 m longer than Mu2e
- Higher beam -> higher cost (solenoid shieldling, neutron shielding)
- Longer solenoids carry "cost" in operation

Phase-1 could be useful if successful to study background rate → Path to Phase-2 is still difficult.



### Q:physics case coupled with the explicit scope of the experiment

## What is COMET (E21) at J-PARC



### Experimental Goal of COMET

# $$\begin{split} B(\mu^- + Al \to e^- + Al) &= 2.6 \times 10^{-17} \\ B(\mu^- + Al \to e^- + Al) < 6 \times 10^{-17} \quad (90\% C.L.) \end{split}$$

- 10<sup>11</sup> muon stops/sec for 56 kW proton beam power.
- 2x10<sup>7</sup> running time (~1 year)
- C-shape muon beam line
- C-shape electron transport followed by electron detection system.
- Stage-1 approved in 2009.

Electron transport with curved solenoid would make momentum and charge selection.

**Osaka University** 

Mu2e can simultaneously see electrons and positrons ٠ from the stopping target

Mu<sub>2e-2</sub>

- Access to additional physics mode:  $\mu^{-} N(Z,A) \rightarrow e^{+} N(Z-2,A)$ 
  - (∆L=2 transition charged analog of neutrinoless double beta decay)
- High energy positrons are an additional handle on radiative backgrounds with converted photons
- Mu2e is the fastest, cheapest path to broad discovery sensitivity in CLFV sector.



tuto Nazional









- FNAL awarded a contract to Hitachi for three lengths of TS conductor (1000 m)
- INFN Genova received six samples (head and tail of production)
- Critical currents of five sample were measured. Except a case (bad soft soldering of the sample) four runs went well.
- Measured critical currents compare very well with the ones performed at Fermilab on extracted strands
- After these results Fermilab is asking INFN Genova to test all 60 cables involved in Mu2e solenoids.













- Simulation/reconstruction of clusters + calorimeter based seed for tracking
- Design and construction of 2 LYSO + APD calorimeter prototypes
- Control stations for characterization of crystals and photosensors
- Design/construction/operation of 50 FEE amplifiers/Voltage regulator
  - + 5 ARM based controller (SEA LNF) + 5 WF prototype (Illinois/Pisa)
- 1 Laser prototype (green light + distribution system)
- Completion of mechanical drawings for CD-2
- 2 NIMs in writing, 6 contributions to Detector conferences this year
- Change on technology and R&D due to sudden LYSO cost increase (x 3) in 2012-2013.







|                                         | AC  | RVV2 | AKM | $\delta LL$ | FBMSSM | LHT | RS  |
|-----------------------------------------|-----|------|-----|-------------|--------|-----|-----|
| $D^0 - \overline{D}^0$                  | *** | *    | *   | *           | *      | *** | ?   |
| $\epsilon_K$                            | *   | ***  | *** | *           | *      | **  | *** |
| $S_{\psi\phi}$                          | *** | ***  | *** | *           | *      | *** | *** |
| $S_{\phi K_S}$                          | *** | **   | *   | ***         | ***    | *   | ?   |
| $A_{\rm CP}\left(B\to X_s\gamma\right)$ | *   | *    | *   | ***         | ***    | *   | ?   |
| $A_{7,8}(B\rightarrow K^*\mu^+\mu^-)$   | *   | *    | *   | ***         | ***    | **  | ?   |
| $A_9(B\to K^*\mu^+\mu^-)$               | *   | *    | *   | *           | *      | *   | ?   |
| $B\to K^{(*)}\nu\bar\nu$                | *   | *    | *   | *           | *      | *   | *   |
| $B_s \rightarrow \mu^+ \mu^-$           | *** | ***  | *** | ***         | ***    | *   | *   |
| $K^+ \to \pi^+ \nu \bar{\nu}$           | *   | *    | *   | *           | *      | *** | *** |
| $K_L \to \pi^0 \nu \bar{\nu}$           | *   | *    | *   | *           | *      | *** | *** |
| $\mu \to e \gamma$                      | *** | ***  | *** | ***         | ***    | *** | *** |
| $\tau \to \mu \gamma$                   | *** | ***  | *   | ***         | ***    | *** | *** |
| $\mu + N \rightarrow e + N$             | *** | ***  | *** | ***         | ***    | *** | *** |
| $d_n$                                   | *** | ***  | *** | **          | ***    | *   | *** |
| $d_e$                                   | *** | ***  | **  | *           | ***    | *   | *** |
| $(g-2)_{\mu}$                           | *** | ***  | **  | ***         | ***    | *   | ?   |

#### W. Altmannshofer, et al, arXiv:0909.1333 [hep-ph]

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models  $\star \star \star$  signals large effects,  $\star \star$  visible but small effects and  $\star$  implies that the given model does not predict sizable effects in that observable.





TABLE XII: LFV rates for points **SPS 1a** and **SPS 1b** in the CKM case and in the  $U_{e3} = 0$  PMNS case. The processes that are within reach of the future experiments (MEG, SuperKEKB) have been highlighted in boldface. Those within reach of post-LHC era planned/discussed experiments (PRISM/PRIME, Super Flavour factory) highlighted in italics.

|                                       | SPS                  | 5 1a                 | SPS 1b               |                      | SPS 2                |                      | SPS 3                |                      | Future                 |
|---------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------------------------|
| Process                               | CKM                  | $U_{e3} = 0$         | CKM                  | $U_{e3}=0$           | CKM                  | $U_{e3}=0$           | CKM                  | $U_{e3}=0$           | Sensitivity            |
| $BR(\mu \rightarrow e \gamma)$        | $3.2 \cdot 10^{-14}$ | $3.8 \cdot 10^{-13}$ | $4.0 \cdot 10^{-13}$ | $1.2 \cdot 10^{-12}$ | $1.3 \cdot 10^{-15}$ | $8.6 \cdot 10^{-15}$ | $1.4 \cdot 10^{-15}$ | $1.2\cdot10^{-14}$   | $O(10^{-14})$          |
| $BR(\mu \rightarrow e e e)$           | $2.3 \cdot 10^{-16}$ | $2.7 \cdot 10^{-15}$ | $2.9 \cdot 10^{-16}$ | $8.6 \cdot 10^{-15}$ | $9.4 \cdot 10^{-18}$ | $6.2 \cdot 10^{-17}$ | $1.0 \cdot 10^{-17}$ | $8.9 \cdot 10^{-17}$ | $O(10^{-14})$          |
| $CR(\mu \rightarrow e \text{ in Ti})$ | $2.0 \cdot 10^{-15}$ | $2.4 \cdot 10^{-14}$ | $2.6 \cdot 10^{-15}$ | $7.6 \cdot 10^{-14}$ | $1.0 \cdot 10^{-16}$ | $6.7 \cdot 10^{-16}$ | $1.0 \cdot 10^{-16}$ | $8.4 \cdot 10^{-16}$ | $O(10^{-18})$          |
| $BR(\tau \rightarrow e \gamma)$       | $2.3 \cdot 10^{-12}$ | $6.0 \cdot 10^{-13}$ | $3.5 \cdot 10^{-12}$ | $1.7 \cdot 10^{-12}$ | $1.4 \cdot 10^{-13}$ | $4.8 \cdot 10^{-15}$ | $1.2 \cdot 10^{-13}$ | $4.1 \cdot 10^{-14}$ | $O(10^{-8})$           |
| $BR(\tau \rightarrow e e e)$          | $2.7 \cdot 10^{-14}$ | $7.1 \cdot 10^{-15}$ | $4.2 \cdot 10^{-14}$ | $2.0 \cdot 10^{-14}$ | $1.7 \cdot 10^{-15}$ | $5.7 \cdot 10^{-17}$ | $1.5 \cdot 10^{-15}$ | $4.9 \cdot 10^{-16}$ | $O(10^{-8})$           |
| $BR(\tau \rightarrow \mu \gamma)$     | $5.0 \cdot 10^{-11}$ | $1.1 \cdot 10^{-8}$  | $7.3 \cdot 10^{-11}$ | $1.3 \cdot 10^{-8}$  | $2.9 \cdot 10^{-12}$ | $7.8 \cdot 10^{-10}$ | $2.7 \cdot 10^{-12}$ | $6.0 \cdot 10^{-10}$ | $O(10^{-9})$           |
| ${\rm BR}(\tau \to \mu  \mu  \mu)$    | $1.6\cdot 10^{-13}$  | $3.4\cdot10^{-11}$   | $2.2\cdot 10^{-13}$  | $3.9\cdot 10^{-11}$  | $8.9\cdot 10^{-15}$  | $2.4\cdot 10^{-12}$  | $8.7\cdot 10^{-15}$  | $1.9\cdot 10^{-12}$  | $\mathcal{O}(10^{-8})$ |

- These are SuSy benchmark points for which LHC has discovery sensitivity
- Some of these will be observable by MEG/Belle-2
- All of these will be observable by Mu2e







### Leptoquarks

Presenza di leptoquarks alla scala del TeV potrebindurre processi CLFV con una costante di accoppiamento  $\lambda$ .

- Rosso: MEG-II
- Blu: Mu2e





M. Kakizaki et al., PLB566 (2003) 210



Stefano Miscetti - Universita' La Sapienza



















- Proton Improvement Plan (PIP)
  - Improve beam power to meet NOvA requirements
  - Essentially complete.
- PIP-II design underway
  - Project-X reimagined to match funding constraints
  - 1+ MW to LBNE at startup (2025)
  - Flexible design to allow future realization of the full potential of the FNAL accelerator complex
    - $\sim 2$  MW to LBNE
    - 10× the protons to Mu2e
    - MW-class, high duty factor beams for rare process experiments



# **Prompt Backgrounds**

Particles produced by proton pulse which interact almost immediately when they enter the detector:  $\pi$ , neutrons, pbars

- Radiative pion capture,  $\pi$ -+A(N,Z)  $\rightarrow \gamma$  +X.
  - γ up to mπ, peak at 110 MeV; γ→ e+e-; if one electron ~ 100 MeV in the target, looks like signal: *limitation in best existing experiment, SINDRUM II?*

energy spectrum of *y* measured on Mg J.A. Bistirlich, K.M. Crowe et al., Phys Rev C5, 1867 (1972)

also included internal conversion,  $\pi^- N \rightarrow e^+ e^- X$ 



INFN


## MEG<sup>UP</sup> sensitivity

| PDF parameters                          | Present MEG                                                         | Upgrade scenario       |
|-----------------------------------------|---------------------------------------------------------------------|------------------------|
| e <sup>+</sup> energy (keV)             | 306 (core)                                                          | 130                    |
| $e^+ \theta$ (mrad)                     | 9.4                                                                 | 5.3                    |
| $e^+ \phi$ (mrad)                       | 8.7                                                                 | 3.7                    |
| e <sup>+</sup> vertex (mm) Z/Y(core)    | 2.4/1.2                                                             | 1.6/0.7                |
| $\gamma$ energy (%) (w <2 cm)/(w >2 cm) | 2.4/1.7                                                             | 1.1/1.0                |
| $\gamma$ position (mm) $u/v/w$          | 5/5/6                                                               | 2.6/2.2/5              |
| $\gamma$ -e <sup>+</sup> timing (ps)    | 122                                                                 | 84                     |
| Efficiency (%)                          |                                                                     |                        |
| trigger                                 | ≈ 99                                                                | ≈ 99                   |
| γ                                       | 63                                                                  | 69                     |
| e <sup>+</sup>                          | 40                                                                  | 88                     |
|                                         | 7 1<br>0.8<br>0.6<br>0.4                                            | $\overline{\bigwedge}$ |
| 49 50 51 52 53 54 55 56 57 56           | 0.2-<br>0.1-<br>0.1-<br>0.1-<br>0.1-<br>0.1-<br>0.1-<br>0.1-<br>0.1 | 52 53 54 55 56 57      |

 $5.7 \times 10^{-13}$ 

18

11



## MEG<sup>UP</sup> sensitivity

- Ultimate sensitivity at the few x 10<sup>-14</sup> level
- Engineering run 2015
- Data taking 2016-2018



## INF

## Mu3e at PSI

- Search for  $\mu \rightarrow e e e$ 
  - 10<sup>-15</sup> sensitivity in phase IA / IB
  - 10<sup>-16</sup> sensitivity in phase II
- Project approved in January 2013
  - Double cone target
  - HV-MAPS ultra thin silicon detectors
  - Scintillating fibers timing counter (from phase IB) \_











- Mu3e decays test also values of K larger than MEG but with different (reduced) sensitivity al large K with respect to Mu2e
- Phase 1 Mu3e at PSI aims to 10<sup>-15</sup> (approved)
- Next phase aims to 10<sup>-16</sup>
  .. Not yet clear





- Thin foils in the debuncher  $\rightarrow$  Mu2e production target transport line (fast feedback)
- Off-axis telescope looking at the production target (slow feedback timescale of hours)
   Spectrometer Magnet



