
N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

Highly Parallelized Pattern Matching Execution for ATLAS
Event Real Time Reconstruction

N. Biesuz, S. Citraro, S. Donati,
M. Piendibene, E. Rossi

C.-L. Sotiropoulou, G. Volpi
University of Pisa

Largo B. Pontecorvo 3, 56127
Pisa, Italy

A. Annovi, A. Andreani, M.
Berreta, P. Giannetti, A. Lanza,

V. Liberali, P. Luciano,
D. Magalotti, S. SHojaii,

A. Stabile
INFN

Via Enrico Fermi 40, 00400
Frascati, Italy

R. Beccherle, F. Crescioli
LPNHE

Couloir 12-22, 4rth floor, Place
Jussieu, 75005
Paris, France

C. Gentsos, N. Kimura,
K. Kordas,S. Nikolaidis

Aristotle University of Thessaloniki
Department of Physics, 54124

Thessaloniki, Greece

D. Dimas, A. Sakellariou
Prisma Electronics SA

El. Venizelou 128,
Nea Smyrni, 17123

Athens, Greece

W. Billereau, J.M. Combe,
P. Vulliez

CERN
CH-1211, Geneva 23,

Switzerland

ABSTRACT

In this paper a high performance "pattern matching" system is

presented. The system is based on the concept of Associative

Memory (AM), designed to solve the track finding problem that is

typical of high energy physics experiments executed in hadron

colliders. It is powerful enough to process data produced from 80

overlapping proton-proton collisions at a 100 kHz rate, in a time

span of a few microseconds, even very high multiplicity events.

The AM is designed for massive parallelism in data correlation

searches. This system is implemented as a large array of custom

VLSI chips (AM chips), based on Content Address Memory

(CAM). All the chips are identical and each one of them stores a

preset number of “patterns”. All the patterns in all the chips are

compared in parallel to the incoming data from the detector while

the detector is being read out. Data are distributed to the AM

chips through a huge network of high speed serial links. The

complexity of the "pattern matching" problem is one that

increases exponentially when CPU-based algorithms are used.

With the proposed system the complexity increase is reduced to

linear and the problem is solved by the time data are loaded in the

system.

General Terms

Algorithms, Measurement, Performance, Design,

Experimentation.

Keywords

Pattern matching, Associative Memory, ASIC, FPGA, ATLAS,

Trigger

1. INTRODUCTION
In recent years there has been a great development in image

detector technology that has led to a great increase in both

resolution and produced data. These detectors target several

different application fields from everyday applications (such as

smart phone cameras) to complex and demanding applications

(high energy physics, medical imaging, security applications and

others). Such applications demand an effective method for data

reduction with minimal loss of information. Pattern matching is a

common algorithm used for such processes.

Pattern matching algorithms look for a given sequence of tokens

(data) that constitute a predefined pattern. Pattern matching is not

limited to image processing, but is extended to other fields such as

data servers (e.g. search engines, data) and all types of data

processing that require identification of patterns. The presented

system can execute 1 million comparisons on a single chip every

10ns, while 64 chips work in parallel on each system board. The

complete system can integrate as many boards as required, all

working in parallel. Such high performance requirements can be

found in high energy physics experiments executed in hadron

colliders.

These high energy physics experiments executed in hadron

colliders search for extremely rare processes hidden in much

larger background levels. The experiments are performed by

overlapping proton-proton collisions that produce particles that

leave traces to the detector's millions of detecting elements (100

million detector elements are used in ATLAS). Each one of these

overlapping proton-proton collisions is called an "event". The data

flow is so massive that only a very small fraction of the produced

collisions can be stored to tape. A drastic real-time data reduction

must be obtained with minimal loss of useful information.

A multi-level trigger is an effective solution for an otherwise

impossible problem. The level-1 (L1) trigger is historically based

on custom processors and reduces the rate from the machine event

production down to tens of kHz. With the current upgrade of the

Large Hardon Collider (LHC) the level-1 trigger will reduce the

event rate to 100 kHz. The level-2 (L2) has been implemented

with dedicated hardware in the past, and with standard CPUs

more recently at LHC. The L2 output rate is usually few kHz. The

level-3 (L3) selection has always been performed by CPU farms

and its output is the one required for data storage on tape.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

These multilevel triggers work by quickly identifying interesting

events. These are events that provide useful information for future

analysis. Tracking devices, and in particular Silicon devices that

are becoming the predominant tracking technology, play an

essential role in the identification of interesting events. In fact,

they provide very detailed information for each particle,

individually detected even in very high occupancy conditions, and

they can discriminate most of the different paths of particles

produced in the same set of overlapping collisions in the same

recorded image. However these detectors contain hundreds of

thousands or millions of channels, so they require huge computing

power for full tracking. They make the problem of complete

tracking a formidable challenge even for off-line analysis. As a

consequence, complete high-quality tracking for real time event

selection at very high rates (low trigger levels) has been

considered impossible in LHC experiments. Real-time tracking

was planned for a limited detector region or on a small subset of

events, previously selected using other detectors. With the

presented system we overcome this problem by providing real-

time tracking by using a massively parallel high performance

system.

2. PATTERN MATCHING FOR THE

ATLAS FAST TRACKER
The presented implementation was developed for the Fast

TracKer Processor (FTK) [1] that is an approved ATLAS

upgrade. The implemented strategy was based on the optimal

mapping of a complex algorithm in different technologies. The

target is to get the best results by combining the high

performances of rigid dedicated hardware with the distinctive

flexibility of general-purpose but lower-performance CPUs. The

architecture's key role is played by high-level field programmable

gate arrays (FPGAs), while most of the computing power is

provided by cooperating full-custom ASICs named Associative

Memories (AM). Powerful highly parallelized dedicated hardware

is built to provide excellent performances, reaching resolutions,

efficiencies and fake rejections typical of offline algorithms, short

latencies (few tens of microseconds), energy saving (the AM chip,

a device able to execute 1 Million of comparisons each 10 ns, has

a power consumption below 3 W), and small occupation of space

(4 racks of electronics is able to perform a task that would need a

farm of thousands of commercial CPUs).

The AM, the central device of our system, shares some features

with the Content-Addressable Memory (CAM) [2], usually used

in very high speed searching applications. Even if AMs and

CAMs are similar devices, there are conceptual design differences

in our proposed AM chip design. The innovation in the

Associative Memories used in our system is that each pattern is

stored in a single memory location like in the commercial CAM,

but it consists of 8 independent words of 16 bits each. Each word

refers to a particular item to be identified in a flux of data that is

private of the words that occupy that position in the pattern. In

fact data are sent on 8 parallel buses, one for each word of the

pattern. Each word is provided with reserved hardware

comparators and a match flip-flop. All words in the AM can make

independent and simultaneous comparisons with the data serially

presented to its own bus. Any time a match is found, the match

flip-flop is set. A pattern matches when a majority of its flip-flops

are set. FPGAs control, configure and handle the AM providing

the flexible computing power to process the selected shapes.

Distributed debugging and monitoring tools suited for a pipelined,

highly parallelized structure and high degree of configurability

have been developed to cope with different applications with the

best possible efficiency.

AMs and CAMs have been used in the past for real time tracking.

Pattern matching has been adopted in different ways, depending

on the trigger level where it was used. Commercial CAMs have

been used in the H1 experiment [3]. In the H1 experiment each bit

of a CAM word corresponded to a detector channel. The whole

event, made of a single large word, had to be submitted to the

memory bank in the same clock cycle. In order to limit the

number of channels to the largest CAM widths, usually smaller

than 1000 bits, only a small detector section was analyzed.

Detector data came in the form of a sequence of addresses of “hit

channels” that are simply called “hits”. Thus, additional hardware

was needed to reformat the incoming data before sending them to

the CAM. When the used detector section is sizable, the number

of bits per word becomes prohibitively large for this method (15

bits to address a channel on each layer of an 8-layer detector

would require a chimerical 23x215 bit wide CAM). The first

produced AM device [4] has been applied without problems to

this case [5]. A full-custom VLSI technology was used in this

context to produce the first AM for the CDF experiment. Each of

the words of one pattern refers to a different detector layer and

represents the address of a possible hit channel on that layer, as

received from the detector front end. All words in the AM could

make independent and simultaneous comparisons with the hit

addresses serially presented to their common buses. Layer

matches could happen at different times, since they are stored in

flip-flops and continuously checked for coincidence with the other

layers to produce a track match.

The presented system was developed and tested for high energy

physics detectors but the problem is essentially an image

processing problem. Therefore the system can be adapted to be

used by more generic image processing applications.

3. IMPLEMENTATION
We have developed a new Associative Memory system for the

ATLAS experiment. It is organized into 128 Processing Units

(PUs) that process the tracker data in parallel, working on

different sections (towers) of the detector. The whole AM system

stores 1 billion (109) AM patterns. The PU is made of a 9U VME

card, the AM board assembled with 64 AM chips, and a Rear

Transition Module (RTM), named AUX card, which is placed in

the same slot of the VME core crate. The AUX card

communicates with the AM board through a high density high

speed connector providing the input data and collecting the fired

patterns.

The design of the AM system is a challenging task, due to the

following factors: (1) the high pattern density (8 million patterns

per board), which requires a large silicon area: (2) the I/O signal

congestion at the board level, which requires the use of serial

links; and (3) the power limitation due to the cooling system: as

we are fitting 8 000 AM chips in 8 VME crates and 4 racks, the

power should not exceed 250 W per AM board.

3.1 The AM chip
A critical figure of merit for a AM-based track reconstruction

system is the number of patterns that can be stored in the data

bank. In the past, the request to maximize available patterns

forced a full-custom VLSI approach, which implied a big

development effort and a difficult upgrade path to more recent and

denser micro-electronic technologies, as they eventually become

available. After that experience, very high density silicon

technologies made it possible to build a very large number of

N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

transistors inside a reasonably large silicon area (say, ~ 1cm2). It

was therefore appropriate to reconsider the best trade-off between

pattern density and ease of design (and eventually re-design).

While the full-custom approach obviously maximizes pattern

density, an FPGA-based design gives the fastest development

time at the cost of a drastically reduced pattern density. This

option has been considered in [6]. Despite the recent FPGA

progress, these devices were and are still not convenient for our

application. Midway between the two approaches, a standard-cell

based design brings substantial advantages, as discussed in details

in the paper [7] that describes the design of AMchip03 for the

CDF experiment.

The requirements for the ATLAS FTK application, however, are

more demanding than those for CDF: a bigger silicon detector

with higher granularity requires more patterns and higher trigger

frequency requires higher operating frequency, while the total

power consumption must be contained. The next generation of

AM devices for ATLAS introduced a mixed architecture: full

custom blocks for the CAM cells, standard cell logic for

everything else, in particular the control logic. The chosen

technology is TSMC 65 nm. The use of full custom CAM cells

enabled a higher pattern density with respect to AMchip03 and

also the use of advanced techniques to reduce power consumption,

more than what expected from simple node scaling from 180 nm

to 65 nm. The full custom design effort was anyhow limited to a

small piece of the large memory, a cell that could be replicated

many times in the very structured area of the chip, occupying the

largest fraction of the die. The control logic instead was totally

implemented with standard cell, easily handled and simulated by

the development software. With this method the design effort, the

degree of reliability and the chip consumption could be

maintained inside the desired limits.

Figure 1. XORAM schematics.

Figure 2. Layout of the XORAM block in 65 nm CMOS

technology.

Another very important feature was introduced in the new AM

chip: ternary logic bits. Some bits in the CAM cell can store

ternary values (1, 0, don’t care) and they can be used to achieve a

variable resolution pattern. The idea of variable resolution pattern

is essential in ATLAS to have a high efficiency pattern bank

without increasing the capacity of the AM system over the

foreseen one billion patterns [1].

The full custom designed CAM cell has been described in [8]. It is

based on the XOR logic function, and it is made of a conventional

6T SRAM cell merged with a pass-transistor XOR gate. Figure 5

shows the CMOS schematic diagram, and Figure 6 illustrates the

layout of a 1-bit cell. The single bit cell output (OUT) is equal to

zero when the stored bit (A) matches the bit-line (BL), and is

equal to one when they are different. The comparison on the 18-

bit words is made by taking the logic NOR of the 18 AM cell

output bits.

The AM chip used parallel busses for I/O in the past. This led to

extreme complexity in the design of the mezzanine boards to host

the AM chips, each board hosting 16 or 32 of them. Furthermore

for the new device is it foreseen to use different power domains

(1.0 V for the AM core and the standard cells, 1.2 V and 2.5 V for

I/O) increasing again the routing complexity of the board. In order

to solve this board routing issue we decided to switch from

parallel busses to high speed serial busses. The package of the

AM chip also changed from TQFP208 to BGA 23x23 in order to

use a modern flip-chip technology, including a heat slug for high

dissipation capability, many pins for the many power domains and

a small number of pins, optimally routed, for the serial I/O: 8

input links to receive input data from the detector, one per layer

used in the pattern matching, 2 links to receive pattern addresses

from other AM chips, and an output to send out the addresses of

patterns fired in the chip itself. In total the AM chip has 11 serial

links.

The main features required for the AM chip serial links

(SERDES) are:

 data rate at least 2 Gb/s to match 16 bit @ 100 MHz

 8b/10b encode/decode capabilities

 separate serializer and deserializer macro (the AM chip

has many input busses but one output bus for patterns)

 32bit input/output bus

 driver and receiver circuits compatible with LVDS

standard

 comma detection and word alignment

 BIST capabilities for fast debugging

 Low power

We have bought SERDES IP by Silicon Creations meeting all our

requests. We have produced 200 AM chips (MPW run) with the

final functionality but a much smaller bank, only 2000 patterns.

Figure 3 shows the test stand setup we have built to test the chips

using a zip socket, to select the good ones for the final system.

3.2 The boards: Putting Chips Together
A 9U-VME board filled with 64 AM chips can allocate 8 Millions

of patterns. To simplify input/output operations, the AM chips are

grouped into AM units composed of 16 chips each, called Little

Associative Memory Boards (LAMB, Figure 4). A 9U-VME

board has been implemented to allocate 4 of such units. Figure 5

N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

shows the motherboard. The LAMB and the motherboard

communicate through a high frequency and high pin-count

connector placed in the center of the LAMB. A network of high

speed serial links characterizes the data distribution from the input

(the high density connector in the green box on the bottom-right

side of Figure 5, called P3) to the 64 AM chips and back to the

connector, for a total of ~750 point-to-point connections. Twelve

input serial links (in yellow) provide the silicon data from the P3,

and 16 output serial links (4 links from each LAMB represented

by a red arrow in the figure) carry the fired patterns from the

LAMBs to P3.

The data traffic is handled by 2 Xilinx FPGAs. They are 2 Xilinx-

Artix7 which have 16 Gigabit Transceivers (GTP) each providing

ultra-fast data transmission. The FPGA in the yellow box in

Figure 5 handles the input data, while the FPGA in the red box

near the P3 handles the output data. Two separate Xilinx Spartan-

6 FPGAs implement the data control logic. The 12 input serial

links are merged into the 8 buses received by each AM chip, one

bus for each detector layer used for pattern matching.

The data rate is really challenging. A huge number of silicon data

must be distributed at high rate (2 Gb/s on each serial link, for a

total of 24 Gb/s maximum rate), with extremely large fan-out.

Events can enter the board with a maximum rate of 100 kHz. Each

10µs in avarege, 8 thousand words (16 bits) have to reach the

patterns through 8 buses and a similarly large number of output

words must be collected and sent back to the P3 (32 Gb/s

maximum output rate). Each input word has to reach the 8 million

patterns of the board.

The large input fan-out is obtained through 3 levels of serial fan-

out chips to reach each of the 64 devices and a very powerful data

distribution tree inside each device itself. The AM chip compares

8 input words with 128k locations each 10 ns. The first level of

1:2 fan-out is visible inside the 2 yellow boxes of Figure 5,

providing each of the 8 buses to the 4 LAMBs. The other two

levels are placed on the LAMBs and are visible in Figure 6.

Figure 3. The AM chips and the test setup

Figure 4. The LAMB assembled with 16 AM chips.

Figure 5. The data traffic in the motherboard.

Figure 6. Input data distribution to AM chips.

Each LAMB has 40 1:4 fan-outs. The 8 red ones around the

central connector (orange box) replicate 4 times each of the 8

incoming buses to make them available to a quartet of AM chips.

For the input data distribution AM chips are organized into

ZIF
socket

P3

AM

N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

vertical quartets as shown by the blue dotted lines in Figure 6. The

second level of fan-outs (yellow little squares) replicates again the

bus 4 times, one for each single AM device in the quartet. The

placement of chips on the LAMB has been studied and optimized

with the goal of minimizing the crossing of the serial links.

Figure 7. Output data collection from AM chips.

Figure 7 shows how the output words are collected from the 16

AM chips, connected in 4 daisy chains. Each AM device has the

capability to receive outputs from other two AM chips and merge

them internally with fired patterns found in the chip itself. Each

daisy chain has a single output that goes directly to the connector.

Each quartet shares also a 100 MHz low jitter clock necessary for

the 11 serial links handled by each AM chip. The oscillator and

the 1:4 fan-out for its output distribution are placed exactly in the

middle of the quartet in the red boxes.

Particular care has been devoted to the PCB routing, in particular

for the many serial links (~200 links), to keep the relative

impedance fixed at 100 Ω and to minimize the cross talk. It is a 12

layer PCB where signal planes and power-GND planes are

alternated. The serial links are all routed into internal layers, so

that they are isolated between two metal planes. In addition they

are shielded from other lines in the same plane by metal ground

fill.

3.3 System Control and configuration
The AM system is hosted in 9U VME crates and it is fully

controlled and monitored using the VME standard. The VME

slave interface, implemented in a Spartan6 FPGA, allows

writing/reading functions to/from registers, memories and FIFOs,

using random access or block transfer modes.

The most important implemented function is the configuration of

the AM chips, in particular the upload of patterns that have to be

stored in the memory.

The AM chips are configured through JTAG port. The 64 chips

are organized into 32 chains of 2 AM chips each. The chains are

handled in parallel to limit configuration time. The VME 32-bit

wide data transfer is segmented into 4 bytes, each one assigned to

a LAMB. On each LAMB 8 JTAG chains are handled by a small

Spartan 6 FPGA (Blue box in Figure 8).

The VME slave interface and the FPGA on LAMBS allow

write/read of the JTAG registers contained in the AM chips.

Pattern downloading time was measured to be ~20 seconds.

Another important part to be configured is the very large number

of serial I/O interfaces. The AM chips alone, use 640 receivers

and 64 transmitters that require proper initialization.

Figure 8. JTAG control of AM chips.

3.4 Data Flow and Event Synchronization
The AM system is part of a data driven pipeline where a large

number of devices are connected by thousands of links: 16400

dedicated custom chips (AM chips) that perform pattern matching

and 2000 FPGAs for all other functions.

A simple communication protocol is used for data transfers. The

data flow through serial links connecting one source to one

destination. The protocol is a simple pipeline transfer driven by

control words, for example idle words and alignment words. An

8b/10b encoding is used in the serial data stream in order to

provide effective error detection, i:e: a 32-bit word is transmitted

as 40 bits. The idle word is transmitted when no valid data is

available. On each link the information is transmitted in data

words whose format depends on the kind of information being

processed in that portion of the pipeline. Alignment words are

periodically transmitted between data words. Input FTK words in

each processing step of the pipeline are pushed into a de-

randomizing FIFO buffer. All the words that are not identified as

control words are pushed into the FIFO (write-enable signal

asserted to the FIFO). The FIFO is popped by whatever processor

sits in the destination device. The source and destination devices

are two separate logic functions in the pipeline which can be on

separate boards or even be two functions in the same large FPGA.

To maximize speed, no handshake is implemented on a word-by-

word basis. A hold signal (HOLD) is used instead as a loose

handshake to prevent loss of data when the destination is busy. If

the destination processor does not keep up with the incoming data,

the FIFO produces an Almost Full signal that is sent back to the

source as the HOLD signal. The source responds to the HOLD

signal by suspending data flow. Using Almost Full instead of Full

gives the source enough time to stop. Since the source is not

required to wait for an acknowledge signal from the destination

device before sending the next data word, data can flow at the

maximum rate compatible with the link bandwidth even when

transit times are long. The standard clock frequency is 100 MHz

for 16-bit words or 50 MHz for 32-bit words, which corresponds

N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

to 2 Gb/s for serial transmission. Some links run at transmission

speeds up to 6 Gb/s.

The HOLD signal travels in the direction opposite to that of the

data, from destination to source. It is transmitted as a single ended

signal when two devices are on the same board, or when two

boards are directly connected by a connector, for example

between the AUX card and the AM inside the PU.

When the information is organized into a packet of words, a

specific bit in the word is defined as an End Packet bit (EP). The

EP bit marks the last word of the packet. The End Event (EE)

word separates data belonging to different events on each

transmission link. It is marked by a specific control word and

signifies the end of the data stream for the current event. The EE

word can be expanded to a packet if the End Event information

requires more than one word. Each device will assert an EE word

or EE packet in its output stream after it has received an EE word

or EE packet in each input stream and it has no more data to

output. The EE word has a special format used to tag the event

and to report the parity and any error flags.

The AM system has many independent input streams, and events

are subdivided into these streams. Data arriving from different

layers of the detector have to be synchronized since the same

event can arrive on different inputs at different times. The board

inputs have FIFOs for this purpose whose depth covers

fluctuations in the device processing time and arrival time of input

data. When the device starts to process an event, words are

popped from the input FIFOs for the various input streams. The

data is processed and results are sent to the output stream. When

the End Event word is received on an input stream, no additional

data is read from that FIFO until the End Event word is received

on all the other input streams. The device can issue a Hold signal

if a FIFO becomes almost full, causing back pressure, but the goal

is to have the FIFO deep enough to limit back pressure as much as

possible. The End Event words from the input streams are

checked to make sure they contain the same event tag. Upon

detection of different event sequences, a severe error is issued and

the system must be resynchronized. Once the event is completely

read out from the input FIFOs and the device finishes its

processing, the event is closed by sending an End Event word to

the output with the same event tag as in the input streams.

3.5 System Monitoring
The AM processes a large quantity of data, little of which winds

up in the event record. If an error occurs, properly diagnosing its

source requires access to the data at every step in the pipeline. To

accomplish this, we implement the Spy Buffer system, which

consists of Spy Buffers in the input and output of each board, as a

logic state analyzer, and between major functions on the board. A

Spy Buffer is a circular memory and a register that contains its

status. This memory is continuously written with the data being

processed by the board. The write operation is stopped when a

Freeze signal is asserted to preserve the data already written. The

Freeze signal has 3 possible sources. (1) When an error is detected

on a board, Freeze is asserted to all Spy Buffers on that board. (2)

When an error is detected on a board, Freeze is sent to the

board(s) immediately upstream of it to freeze their output Spy

Buffers. (3) There is a bit in the Event Trailer record that tells all

boards to freeze their Spy Buffers after processing the current

event. This last option enables events without error flags set to be

read out and compared with simulation to ensure that there aren’t

subtle problems in the hardware. After Freeze is set, no data can

be written into the memory and the content of the memory is read

through VME access. For each Spy Buffer there is a Status

Register that contains a pointer to the first free memory location,

an overflow bit that indicates if the memory has been written

more than once, and the Freeze bit. Spy Buffers are small since

we want to use them to monitor or analyze a single event. Each

Spy buffer will contain 4-8 average events. Since the maximum

average number of words per event that can be transmitted on a

link is 1000, each single Spy Buffer will be 4-8 k locations deep.

Comparing a sender’s output buffer with a receiver’s input buffer

checks data transmission. Comparing a board’s input and output

with emulation software checks data processing. The memories

also serve as sources and sinks of test patterns for testing single

boards or a small chain of boards, as a standalone system.

4. RESULTS

4.1 Quality of the Serial Links
We tested systematically all the serial links internal the AM

board and also the ones connecting the AM with the AUX inside

the PU before producing the final prototype. We observed quality

dependence on the length of the link and also on the design

method, so we could optimize the results of the final PCB. The

eye diagram of the typical link after the optimization process can

be seen in Figure 9. We directly tested with a PRBS-7 generator

the bit error rate to be less than 10-14 (estimation from bathtub plot

is BERR~10-22).

4.2 Event Processing Validation
To test the global functionality of the system the most useful and

comprehensive test we have is called “ Random Test”. It

generates events containing random input data, so that it makes

possible to test also rare conditions that could escape standard

specific systematic tests. This test is important because it performs

a realistic simulation of the AM system dataflow and provides a

tool that allows comparing the observed fired patterns with the

expected ones. It is possible to use it not only in the development

phase but also for diagnostic purposes during the real data taking.

During the data taking it is important to have a global tool to

debug errors on the boards in the shortest time as possible, so that

a minimum number of events from the detector are lost. Once a

problem is found using the Random Test, we use a set of

dedicated tools to understand where the error comes from. For the

Random test we perform these steps:

Figure 9. Serial data link analysis

s=12.18 ps
s=9.56 ps
r=436e-3

N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

Figure 10. The test stand for debugging

 We generate random patterns and we download the

bank in the chips.

 We generate random data, enriched of good words that

fire patterns.

 We simulate the data flow of the AM system calculating

the expected fired patterns keeping into account the

knowledge of the bank and the data to be sent in input.

 We download the input words to the AUX through

VME and we let them flow to the AM system at full

speed.

 We read back by VME the real fired patterns received

and stored back in the AUX.

 Finally we compare these patterns with the expected

ones.

The Board has been successfully tested using these events in a

long test of 3 days without any error. It will be installed on the

experiment to take data for the first time at the end of 2015.

5. FUTURE EVOLUTION
The future evolution of the presented system targets two different

goals:

 Adapting the existing system to be used by generic image

processing applications.

 A technological effort to "miniaturize" the system's PU and

make it suitable to be used as a coprocessor for speed up of

offline tracking algorithms. Such an implementation can be

used for the targeted generic image processing applications.

Tha AM system fundamentally executes a filtering function that

can also target images of different nature. The AM-based

processor can simulate the preliminary stages of image processing

performed by the brain for vision, such as the identification of

shape edges [9]. The most convincing models that try to validate

brain functioning hypotheses are extremely similar to the real time

architectures developed for High Energy Physics experiments. A

multilevel model seems appropriate also to describe the brain

organization to perform a synthesis certainly much more

impressive than what done in HEP triggers. The AM pattern

matching has proven to play a key role in high rate

filtering/reduction tasks [9]. We can test the AM device capability

as the first level of this process, dedicated to external stimuli pre-

processing. We follow the conjecture that brain works by

dramatically reducing input information by selecting for higher-

level processing and long-term storage only the input data that

match a particular set of memorized patterns. The double

constraint of finite computing power and finite output bandwidth

determines to a large extent what type of information is found to

be "meaningful" or "relevant" and becomes part of higher level

processing and longer-term memory. The AM-based processor

will be used for a real-time hardware implementation of fast

pattern selection/filtering of the type studied in these models of

human vision and other brain functions. Shapes extracted by the

AM from the images would be analyzed exploiting the computing

power of the FPGAs to identify clusters of contiguous pixels

above a programmable threshold [10]. The AM, cooperating with

the FPGAs could have a new nice application in the field of Smart

Cameras. As a summary, this multi-chip system will try to

reproduce the initial stages of the brain visual processing: the

ASIC will extract object contours and the FPGA will analyse their

shape.

The systems miniaturization will be achieved by producing a

System In Package (SIP) where the FPGA, an external large

memory and a single AM chip are packaged together [11].

6. CONCLUSIONS
In this paper a powerful, highly parallelized pattern matching

system is presented. The system exploits dedicated hardware to

provide excellent performances, reaching resolutions, efficiencies

and fake rejections typical of offline algorithms. The system

achieves very short latencies (few tens of microseconds) and the

system 's core, the AM chip, a device able to execute 1 Million of

comparisons each 10 ns, has peak power consumption below 3 W.

The system itself is several magnitudes smaller than its CPU

equivalent (4 racks of electronics is able to perform a task that

would need a farm of thousands of commercial CPUs),

Communication between chips is guaranteed by a powerful

network of more than 750 2 Gb/s serial links. The system is

developed for the ATLAS Fast TracKer Processor but it can be

adapted to be used for generic image processing applications. The

system is flexible and a planned future evolution is to be

"miniaturized" in order to be used as a coprocessor for any kind of

image reconstruction. Such a coprocessor can target any artificial

intelligence process based on massive pattern recognition.

7. ACKNOWLEDGMENTS
The AM system project receives support from Istituto Nazionale

di Fisica Nucleare; and the European community FP7 People

grant FTK 324318 FP7-PEOPLE-2012-IAPP.

8. REFERENCES
[1] Andreani A. et al. 2012. The FastTracker Real Time

Processor and Its Impact on Muon Isolation, Tau and b-Jet

Online Selections at ATLAS. IEEE Transactions on Nuclear

Science 59, 2, 348-357. DOI= 10.1109/TNS.2011.2179670

[2] Pagiamtzis, K. and Sheikholeslami, A. 2006. Content-

addressable memory (CAM) circuits and architectures: A

tutorial and survey. IEEE Journal of Solid-State Circuits. 41,

3, (Mar. 2006), 712-727. DOI=10.1109/JSSC.2005.864128

[3] Wissing, C. et al. 2005. Performance of the H1 Fast Track

Trigger Operation and Commissioning Results. In Real Time

Conference, 2005, 14th IEEE-NPSS.

DOI=10.1109/RTC.2005.1547429

[4] Amendolia, R. et al. 1992. The AMchip: a full-custom

CMOS VLSI associative memory for pattern recognition.

IEEE Transactions on Nuclear Science. 39, 4, pp. 795-797.

DOI= 10.1109/23.159709

AM board

AUX board

http://dx.doi.org/10.1109/TNS.2011.2179670
http://dx.doi.org/10.1109/RTC.2005.1547429

N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

[5] Jones, M. et al. 2008. The CDF II Level 1 Track Trigger

Upgrade. IEEE Transactions on Nuclear Science. 55, 1, pp.

126-132. DOI= 10.1109/TNS.2007.911618

[6] Bardi, A. et al. 1998. A programmable associative memory

for track Finding. Nuclear Instruments and Methods in

Physics Research A. 413, (1998), 367-373.

[7] Annovi, A., et al. 2006. VLSI Processor for Fast Track

Finding Based on Content Addressable Memories. IEEE

Transactions on Nuclear Science. 53, 4, (August 2006) 2428-

2433. DOI= 10.1109/TNS.2006.876052

[8] Frontini, L., Shojaii, S., Stabile, A., and Liberali, V. 1994. A

new XOR-based Content Addressable Memory architecture.

in Proceedings of the International Conference on

Electronics, Circuits and Systems (ICECS), Seville Spain

(December 2012), 701-704.

DOI=10.1109/ICECS.2012.6463629

[9] Del Viva, M., Punzi, G., and Benedetti, D. 2013. Information

and Perception of Meaningful Patterns. PloS one 8.7 (July

2013): e69154. DOI: 10.1371/journal.pone.0069154

[10] Sotiropoulou, C.-L. et al. A Multi-Core FPGA-based 2D-

Clustering Implementation for Real-Rime Image Processing"

In IEEE Transactions on Nuclear Science. 61, 6, (August

2006) 3599-3606. DOI= 10.1109/TNS.2014.2364183

[11] Gentsos, C. et al. 2014. Future evolution of the Fast TracKer

(FTK) processing unit. Proceedings of Science. 209

http://dx.doi.org/10.1109/TNS.2007.911618
http://dx.doi.org/10.1109/TNS.2006.876052
http://dx.doi.org/10.1109/ICECS.2012.6463629

