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ABSTRACT 

In this paper a high performance "pattern matching" system is 

presented. The system is based on the concept of Associative 

Memory (AM), designed to solve the track finding problem that is 

typical of high energy physics experiments executed in hadron 

colliders. It is powerful enough to process data produced from 80 

overlapping proton-proton collisions at a 100 kHz  rate, in a time 

span of a few microseconds, even very high multiplicity events. 

The AM is designed for massive parallelism in data correlation 

searches. This system is implemented as a large array of custom 

VLSI chips (AM chips), based on Content Address Memory 

(CAM). All the chips are identical and each one of them stores a 

preset number of “patterns”. All the patterns in all the chips are 

compared in parallel to the incoming data from the detector while 

the detector is being read out. Data are distributed to the AM 

chips through a huge network of high speed serial links. The 

complexity of the "pattern matching" problem is one that 

increases exponentially when CPU-based algorithms are used. 

With the proposed system the complexity increase is reduced to 

linear and the problem is solved by the time data are loaded in the 

system. 

General Terms 

Algorithms, Measurement, Performance, Design, 

Experimentation. 

Keywords 

Pattern matching, Associative Memory, ASIC, FPGA, ATLAS, 
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1. INTRODUCTION 
In recent years there has been a great development in image 

detector technology that has led to a great increase in both 

resolution and produced data. These detectors target several 

different application fields from everyday applications (such as 

smart phone cameras) to complex and demanding applications 

(high energy physics, medical imaging, security applications and 

others). Such applications demand an effective method for data 

reduction with minimal loss of information. Pattern matching is a 

common algorithm used for such processes.  

Pattern matching algorithms look for a given sequence of tokens 

(data) that constitute a predefined pattern. Pattern matching is not 

limited to image processing, but is extended to other fields such as 

data servers (e.g. search engines, data) and all types of data 

processing that require identification of patterns. The presented 

system can execute 1 million comparisons on a single chip every 

10ns, while 64 chips work in parallel on each system board. The 

complete system can integrate as many boards as required, all 

working in parallel. Such high performance requirements can be 

found in high energy physics experiments executed in hadron 

colliders.  

These high energy physics experiments executed in hadron 

colliders search for extremely rare processes hidden in much 

larger background levels. The experiments are performed by 

overlapping proton-proton collisions that produce particles that 

leave traces to the detector's millions of detecting elements (100 

million detector elements are used in ATLAS). Each one of these 

overlapping proton-proton collisions is called an "event". The data 

flow is so massive that only a very small fraction of the produced 

collisions can be stored to tape. A drastic real-time data reduction 

must be obtained with minimal loss of useful information.  

A multi-level trigger is an effective solution for an otherwise 

impossible problem. The level-1 (L1) trigger is historically based 

on custom processors and reduces the rate from the machine event 

production down to tens of kHz. With the current upgrade of the 

Large Hardon Collider (LHC) the level-1 trigger will reduce the 

event rate to 100 kHz. The level-2 (L2) has been implemented 

with dedicated hardware in the past, and with standard CPUs 

more recently at LHC. The L2 output rate is usually few kHz. The 

level-3 (L3) selection has always been performed by CPU farms 

and its output is the one required for data storage on tape.  
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These multilevel triggers work by quickly identifying interesting 

events. These are events that provide useful information for future 

analysis. Tracking devices, and in particular Silicon devices that 

are becoming the predominant tracking technology, play an 

essential role in the identification of interesting events. In fact, 

they provide very detailed information for each particle, 

individually detected even in very high occupancy conditions, and 

they can discriminate most of the different paths of particles 

produced in the same set of overlapping collisions in the same 

recorded image. However these detectors contain hundreds of 

thousands or millions of channels, so they require huge computing 

power for full tracking. They make the problem of complete 

tracking a formidable challenge even for off-line analysis. As a 

consequence, complete high-quality tracking for real time event 

selection at very high rates (low trigger levels) has been 

considered impossible in LHC experiments. Real-time tracking 

was planned for a limited detector region or on a small subset of 

events, previously selected using other detectors. With the 

presented system we overcome this problem by providing real-

time tracking by using a massively parallel high performance 

system.  

2. PATTERN MATCHING FOR THE 

ATLAS FAST TRACKER 
The presented implementation was developed for the Fast 

TracKer Processor (FTK) [1] that is an approved ATLAS 

upgrade. The implemented strategy was based on the optimal 

mapping of a complex algorithm in different technologies. The 

target is to get the best results by combining the high 

performances of rigid dedicated hardware with the distinctive 

flexibility of general-purpose but lower-performance CPUs. The 

architecture's key role is played by high-level field programmable 

gate arrays (FPGAs), while most of the computing power is 

provided by cooperating full-custom ASICs named Associative 

Memories (AM). Powerful highly parallelized dedicated hardware 

is built to provide excellent performances, reaching resolutions, 

efficiencies and fake rejections typical of offline algorithms, short 

latencies (few tens of microseconds), energy saving (the AM chip, 

a device able to execute 1 Million of comparisons each 10 ns, has 

a power consumption below 3 W), and small occupation of space 

(4 racks of electronics is able to perform a task that would need a 

farm of thousands of commercial CPUs).  

The AM, the central device of our system, shares some features 

with the Content-Addressable Memory (CAM) [2], usually used 

in very high speed searching applications. Even if AMs and 

CAMs are similar devices, there are conceptual design differences 

in our proposed AM chip design. The innovation in the 

Associative Memories used in our system is that each pattern is 

stored in a single memory location like in the commercial CAM, 

but it consists of 8 independent words of 16 bits each. Each word 

refers to a particular item to be identified in a flux of data that is 

private of the words that occupy that position in the pattern. In 

fact data are sent on 8 parallel buses, one for each word of the 

pattern. Each word is provided with reserved hardware 

comparators and a match flip-flop. All words in the AM can make 

independent and simultaneous comparisons with the data serially 

presented to its own bus. Any time a match is found, the match 

flip-flop is set. A pattern matches when a majority of its flip-flops 

are set. FPGAs control, configure and handle the AM providing 

the flexible computing power to process the selected shapes. 

Distributed debugging and monitoring tools suited for a pipelined, 

highly parallelized structure and high degree of configurability 

have been developed to cope with different applications with the 

best possible efficiency.  

AMs and CAMs have been used in the past for real time tracking. 

Pattern matching has been adopted in different ways, depending 

on the trigger level where it was used. Commercial CAMs have 

been used in the H1 experiment [3]. In the H1 experiment each bit 

of a CAM word corresponded to a detector channel. The whole 

event, made of a single large word, had to be submitted to the 

memory bank in the same clock cycle. In order to limit the 

number of channels to the largest CAM widths, usually smaller 

than 1000 bits, only a small detector section was analyzed. 

Detector data came in the form of a sequence of addresses of “hit 

channels” that are simply called “hits”. Thus, additional hardware 

was needed to reformat the incoming data before sending them to 

the CAM. When the used detector section is sizable, the number 

of bits per word becomes prohibitively large for this method (15 

bits to address a channel on each layer of an 8-layer detector 

would require a chimerical 23x215 bit wide CAM). The first 

produced AM device [4] has been applied without problems to 

this case [5]. A full-custom VLSI technology was used in this 

context to produce the first AM for the CDF experiment. Each of 

the words of one pattern refers to a different detector layer and 

represents the address of a possible hit channel on that layer, as 

received from the detector front end. All words in the AM could 

make independent and simultaneous comparisons with the hit 

addresses serially presented to their common buses. Layer 

matches could happen at different times, since they are stored in 

flip-flops and continuously checked for coincidence with the other 

layers to produce a track match. 

The presented system was developed and tested for high energy 

physics detectors but the problem is essentially an image 

processing problem. Therefore the system can be adapted to be 

used by  more generic image processing applications.  

3. IMPLEMENTATION  
We have developed a new Associative Memory system for the 

ATLAS experiment. It is organized into 128 Processing Units 

(PUs) that process the tracker data in parallel, working on 

different sections (towers) of the detector. The whole AM system 

stores 1 billion (109) AM patterns. The PU is made of a 9U VME 

card, the AM board assembled with 64 AM chips, and a Rear 

Transition Module (RTM), named AUX card, which is placed in 

the same slot of the VME core crate. The AUX card 

communicates with the AM board through a high density high 

speed connector providing the input  data and collecting the fired 

patterns.  

The design of the AM system is a challenging task, due to the 

following factors: (1) the high pattern density (8 million patterns 

per board), which requires a large silicon area: (2) the I/O signal 

congestion at the board level, which requires the use of serial 

links; and (3) the power limitation due to the cooling system: as 

we are fitting 8 000 AM chips in 8 VME crates and 4 racks, the 

power should not exceed 250 W per AM board. 

3.1 The AM chip 
A critical figure of merit for a AM-based track reconstruction 

system is the number of patterns that can be stored in the data 

bank. In the past, the request to maximize available patterns 

forced a full-custom VLSI approach, which implied a big 

development effort and a difficult upgrade path to more recent and 

denser micro-electronic technologies, as they eventually become 

available. After that experience, very high density silicon 

technologies made it possible to build a very large number of 
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transistors inside a reasonably large silicon area (say, ~ 1cm2). It 

was therefore appropriate to reconsider the best trade-off between 

pattern density and ease of design (and eventually re-design). 

While the full-custom approach obviously maximizes pattern 

density, an FPGA-based design gives the fastest development 

time at the cost of a drastically reduced pattern density. This 

option has been considered in [6]. Despite the recent FPGA 

progress, these devices were and are still not convenient for our 

application. Midway between the two approaches, a standard-cell 

based design brings substantial advantages, as discussed in details 

in the paper [7] that describes the design of AMchip03 for the 

CDF experiment. 

The requirements for the ATLAS FTK application, however, are 

more demanding than those for CDF: a bigger silicon detector 

with higher granularity requires more patterns and higher trigger 

frequency requires higher operating frequency, while the total 

power consumption must be contained. The next generation of 

AM devices for ATLAS introduced a mixed architecture: full 

custom blocks for the CAM cells, standard cell logic for 

everything else, in particular the control logic. The chosen 

technology is TSMC 65 nm. The use of full custom CAM cells 

enabled a higher pattern density with respect to AMchip03 and 

also the use of advanced techniques to reduce power consumption, 

more than what expected from simple node scaling from 180 nm 

to 65 nm. The full custom design effort was anyhow limited to a 

small piece of the large memory, a cell that could be replicated 

many times in the very structured area of the chip, occupying the 

largest fraction of the die. The control logic instead was totally 

implemented with standard cell, easily handled and simulated by 

the development software. With this method the design effort, the 

degree of reliability and the chip consumption could be 

maintained inside the desired limits.  

 

 

Figure 1. XORAM schematics. 

 

 

Figure 2. Layout of the XORAM block in 65 nm CMOS 

technology. 

Another very important feature was introduced in the new AM 

chip: ternary logic bits. Some bits in the CAM cell can store 

ternary values (1, 0, don’t care) and they can be used to achieve a 

variable resolution pattern. The idea of variable resolution pattern 

is essential in ATLAS to have a high efficiency pattern bank 

without increasing the capacity of the AM system over the 

foreseen one billion patterns [1]. 

The full custom designed CAM cell has been described in [8]. It is 

based on the XOR logic function, and it is made of a conventional 

6T SRAM cell merged with a pass-transistor XOR gate. Figure 5 

shows the CMOS schematic diagram, and Figure 6 illustrates the 

layout of a 1-bit cell. The single bit cell output (OUT) is equal to 

zero when the stored bit (A) matches the bit-line (BL), and is 

equal to one when they are different. The comparison on the 18-

bit words is made by taking the logic NOR of the 18 AM cell 

output bits.  

The AM chip used parallel busses for I/O in the past. This led to 

extreme complexity in the design of the mezzanine boards to host 

the AM chips, each board hosting 16 or 32 of them. Furthermore 

for the new device is it foreseen to use different power domains 

(1.0 V for the AM core and the standard cells, 1.2 V and 2.5 V for 

I/O) increasing again the routing complexity of the board. In order 

to solve this board routing issue we decided to switch from 

parallel busses to high speed serial busses. The package of the 

AM chip also changed from TQFP208 to BGA 23x23 in order to 

use a modern flip-chip technology, including a heat slug for high 

dissipation capability, many pins for the many power domains and 

a small number of pins, optimally routed, for the serial I/O: 8 

input links to receive input data from the detector, one per layer 

used in the pattern matching, 2 links to receive pattern addresses 

from other AM chips, and an output to send out the addresses of 

patterns fired in the chip itself. In total the AM chip has 11 serial 

links.  

The main features required for the AM chip serial links 

(SERDES) are:  

 data rate at least 2 Gb/s to match 16 bit @ 100 MHz  

 8b/10b encode/decode capabilities 

 separate serializer and deserializer macro (the AM chip 

has many input busses but one output bus for patterns) 

 32bit input/output bus 

 driver and receiver circuits compatible with LVDS 

standard 

 comma detection and word alignment 

 BIST capabilities for fast debugging 

 Low power 

We have bought SERDES IP by Silicon Creations meeting all our 

requests. We have produced 200 AM chips (MPW run) with the 

final functionality but a much smaller bank, only 2000 patterns.  

Figure 3 shows the test stand setup we have built to test the chips 

using a zip socket, to select the good ones for the final system. 

3.2 The boards: Putting Chips Together 
A 9U-VME board filled with 64 AM chips can allocate 8 Millions 

of patterns. To simplify input/output operations, the AM chips are 

grouped into AM units composed of 16 chips each, called Little 

Associative Memory Boards (LAMB, Figure 4).  A 9U-VME 

board has been implemented to allocate 4 of such units.  Figure 5 
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shows the motherboard. The LAMB and the motherboard 

communicate through a high frequency and high pin-count 

connector placed in the center of the LAMB. A network of high 

speed serial links characterizes the data distribution from the input 

(the high density connector in the green box on the bottom-right 

side of Figure 5, called P3) to the 64 AM chips and back to the 

connector, for a total of ~750 point-to-point connections. Twelve 

input serial links (in yellow) provide the silicon data from the P3, 

and 16 output serial links (4 links from each LAMB represented 

by a red arrow in the figure) carry the fired patterns from the 

LAMBs to P3. 

The data traffic is handled by 2 Xilinx FPGAs. They are 2 Xilinx-

Artix7 which have 16 Gigabit Transceivers (GTP) each providing 

ultra-fast data transmission. The FPGA in the yellow box in 

Figure 5 handles the input data, while the FPGA in the red box 

near the P3 handles the output data. Two separate Xilinx Spartan-

6 FPGAs implement the data control logic. The 12 input serial 

links are merged into the 8 buses received by each AM chip, one 

bus for each detector layer used for pattern matching.  

The data rate is really challenging. A huge number of silicon data 

must be distributed at high rate (2 Gb/s on each serial link, for a 

total of 24 Gb/s maximum rate), with extremely large fan-out. 

Events can enter the board with a maximum rate of 100 kHz. Each 

10µs in avarege, 8 thousand words (16 bits) have to reach the 

patterns through 8 buses and a similarly large number of output 

words must be collected and sent back to the P3 (32 Gb/s 

maximum output rate). Each input word has to reach the 8 million 

patterns of the board. 

The large input fan-out is obtained through 3 levels of serial fan-

out chips to reach each of the 64 devices and a very powerful data 

distribution tree inside each device itself. The AM chip compares 

8 input words with 128k locations each 10 ns. The first level of 

1:2 fan-out is visible inside the 2 yellow boxes of Figure 5, 

providing each of the 8 buses to the 4 LAMBs. The other two 

levels are placed on the LAMBs and are visible in Figure 6.   

 

 

Figure 3. The AM chips and the test setup  

 

Figure 4. The LAMB assembled with 16 AM chips. 

 

 

Figure 5. The data traffic in the motherboard. 

 

 

Figure 6. Input data distribution to AM chips. 

Each LAMB has 40 1:4 fan-outs. The 8 red ones around the 

central connector (orange box) replicate 4 times each of the 8 

incoming buses to make them available to a quartet of AM chips. 

For the input data distribution AM chips are organized into 

ZIF
socket

P3

AM
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vertical quartets as shown by the blue dotted lines in Figure 6. The 

second level of fan-outs (yellow little squares) replicates again the 

bus 4 times, one for each single AM device in the quartet. The 

placement of chips on the LAMB has been studied and optimized 

with the goal of minimizing the crossing of the serial links.  

 

Figure 7. Output data collection from AM chips. 

Figure 7 shows how the output words are collected from the 16 

AM chips, connected in 4 daisy chains. Each AM device has the 

capability to receive outputs from other two AM chips and merge 

them internally with fired patterns found in the chip itself. Each 

daisy chain has a single output that goes directly to the connector.  

Each quartet shares also a 100 MHz low jitter clock necessary for 

the 11 serial links handled by each AM chip. The oscillator and 

the 1:4 fan-out for its output distribution are placed exactly in the 

middle of the quartet in the red boxes.  

Particular care has been devoted to the PCB routing, in particular 

for the many serial links (~200 links), to keep the relative 

impedance fixed at 100 Ω and to minimize the cross talk. It is a 12 

layer PCB where signal planes and power-GND planes are 

alternated. The serial links are all routed into internal layers, so 

that they are isolated between two metal planes. In addition they 

are shielded from other lines in the same plane by metal ground 

fill. 

3.3 System Control and configuration 
The AM system is hosted in 9U VME crates and it is fully 

controlled and monitored using the VME standard. The VME 

slave interface, implemented in a Spartan6 FPGA, allows 

writing/reading functions to/from registers, memories and FIFOs, 

using random access or block transfer modes.  

The most important implemented function is the configuration of 

the AM chips, in particular the upload of patterns that have to be 

stored in the memory.  

The AM chips are configured through JTAG port. The 64 chips 

are organized into 32 chains of 2 AM chips each. The chains are 

handled in parallel to limit configuration time.  The VME 32-bit 

wide data transfer is segmented into 4 bytes, each one assigned to 

a LAMB.  On each LAMB 8 JTAG chains are handled by a small 

Spartan 6 FPGA (Blue box in Figure 8).  

The VME slave interface and the FPGA on LAMBS allow 

write/read of the JTAG registers contained in the AM chips. 

Pattern downloading time was measured to be ~20 seconds. 

Another important part to be configured is the very large number 

of serial I/O interfaces. The AM chips alone, use 640 receivers 

and 64 transmitters that require proper initialization.  

 

 

Figure 8. JTAG control of AM chips. 

3.4 Data Flow and Event Synchronization 
The AM system is part of a data driven pipeline where a large 

number of devices are connected by thousands of links: 16400 

dedicated custom chips (AM chips) that perform pattern matching 

and 2000 FPGAs for all other functions.  

A simple communication protocol is used for data transfers. The 

data flow through serial links connecting one source to one 

destination. The protocol is a simple pipeline transfer driven by 

control words, for example idle words and alignment words. An 

8b/10b encoding is used in the serial data stream in order to 

provide effective error detection, i:e: a 32-bit word is transmitted 

as 40 bits. The idle word is transmitted when no valid data is 

available. On each link the information is transmitted in data 

words whose format depends on the kind of information being 

processed in that portion of the pipeline. Alignment words are 

periodically transmitted between data words. Input FTK words in 

each processing step of the pipeline are pushed into a de-

randomizing FIFO buffer. All the words that are not identified as 

control words are pushed into the FIFO (write-enable signal 

asserted to the FIFO). The FIFO is popped by whatever processor 

sits in the destination device. The source and destination devices 

are two separate logic functions in the pipeline which can be on 

separate boards or even be two functions in the same large FPGA.  

To maximize speed, no handshake is implemented on a word-by-

word basis. A hold signal (HOLD) is used instead as a loose 

handshake to prevent loss of data when the destination is busy. If 

the destination processor does not keep up with the incoming data, 

the FIFO produces an Almost Full signal that is sent back to the 

source as the HOLD signal. The source responds to the HOLD 

signal by suspending data flow. Using Almost Full instead of Full 

gives the source enough time to stop. Since the source is not 

required to wait for an acknowledge signal from the destination 

device before sending the next data word, data can flow at the 

maximum rate compatible with the link bandwidth even when 

transit times are long. The standard clock frequency is 100 MHz 

for 16-bit words or 50 MHz for 32-bit words, which corresponds 
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to 2 Gb/s for serial transmission. Some links run at transmission 

speeds up to 6 Gb/s.  

The HOLD signal travels in the direction opposite to that of the 

data, from destination to source. It is transmitted as a single ended 

signal when two devices are on the same board, or when two 

boards are directly connected by a connector, for example 

between the AUX card and the AM inside the PU.  

When the information is organized into a packet of words, a 

specific bit in the word is defined as an End Packet bit (EP). The 

EP bit marks the last word of the packet. The End Event (EE) 

word separates data belonging to different events on each 

transmission link. It is marked by a specific control word and 

signifies the end of the data stream for the current event. The EE 

word can be expanded to a packet if the End Event information 

requires more than one word. Each device will assert an EE word 

or EE packet in its output stream after it has received an EE word 

or EE packet in each input stream and it has no more data to 

output. The EE word has a special format used to tag the event 

and to report the parity and any error flags.  

The AM system has many independent input streams, and events 

are subdivided into these streams. Data arriving from different 

layers of the detector have to be synchronized since the same 

event can arrive on different inputs at different times. The board 

inputs have FIFOs for this purpose whose depth covers 

fluctuations in the device processing time and arrival time of input 

data. When the device starts to process an event, words are 

popped from the input FIFOs for the various input streams. The 

data is processed and results are sent to the output stream. When 

the End Event word is received on an input stream, no additional 

data is read from that FIFO until the End Event word is received 

on all the other input streams. The device can issue a Hold signal 

if a FIFO becomes almost full, causing back pressure, but the goal 

is to have the FIFO deep enough to limit back pressure as much as 

possible. The End Event words from the input streams are 

checked to make sure they contain the same event tag. Upon 

detection of different event sequences, a severe error is issued and 

the system must be resynchronized. Once the event is completely 

read out from the input FIFOs and the device finishes its 

processing, the event is closed by sending an End Event word to 

the output with the same event tag as in the input streams.  

3.5 System Monitoring 
The AM processes a large quantity of data, little of which winds 

up in the event record. If an error occurs, properly diagnosing its 

source requires access to the data at every step in the pipeline. To 

accomplish this, we implement the Spy Buffer system, which 

consists of Spy Buffers in the input and output of each board, as a 

logic state analyzer, and between major functions on the board. A 

Spy Buffer is a circular memory and a register that contains its 

status. This memory is continuously written with the data being 

processed by the board. The write operation is stopped when a 

Freeze signal is asserted to preserve the data already written. The 

Freeze signal has 3 possible sources. (1) When an error is detected 

on a board, Freeze is asserted to all Spy Buffers on that board. (2) 

When an error is detected on a board, Freeze is sent to the 

board(s) immediately upstream of it to freeze their output Spy 

Buffers. (3) There is a bit in the Event Trailer record that tells all 

boards to freeze their Spy Buffers after processing the current 

event. This last option enables events without error flags set to be 

read out and compared with simulation to ensure that there aren’t 

subtle problems in the hardware. After Freeze is set, no data can 

be written into the memory and the content of the memory is read 

through VME access. For each Spy Buffer there is a Status 

Register that contains a pointer to the first free memory location, 

an overflow bit that indicates if the memory has been written 

more than once, and the Freeze bit. Spy Buffers are small since 

we want to use them to monitor or analyze a single event. Each 

Spy buffer will contain 4-8 average events. Since the maximum 

average number of words per event that can be transmitted on a 

link is 1000, each single Spy Buffer will be 4-8 k locations deep.  

Comparing a sender’s output buffer with a receiver’s input buffer 

checks data transmission. Comparing a board’s input and output 

with emulation software checks data processing. The memories 

also serve as sources and sinks of test patterns for testing single 

boards or a small chain of boards, as a standalone system.  

4. RESULTS 

4.1 Quality of the Serial Links 
We tested systematically all the serial links internal the AM 

board and also the ones connecting the AM with the AUX inside 

the PU before producing the final prototype. We observed quality 

dependence on the length of the link and also on the design 

method, so we could optimize the results of the final PCB. The 

eye diagram of the typical link after the optimization process can 

be seen in Figure 9. We directly tested with a PRBS-7 generator 

the bit error rate to be less than 10-14 (estimation from bathtub plot 

is BERR~10-22). 

4.2 Event Processing Validation 
To test the global functionality of the system the most useful and 

comprehensive test we have is called “ Random Test”. It 

generates events containing random input data, so that it makes 

possible to test also rare conditions that could escape standard 

specific systematic tests. This test is important because it performs 

a realistic simulation of the AM system dataflow and provides a 

tool that allows comparing the observed fired patterns with the 

expected ones. It is possible to use it not only in the development 

phase but also for diagnostic purposes during the real data taking. 

During the data taking it is important to have a global tool to 

debug errors on the boards in the shortest time as possible, so that 

a minimum number of events from the detector are lost. Once a 

problem is found using the Random Test, we use a set of 

dedicated tools to understand where the error comes from. For the 

Random test we perform these steps: 

 

Figure 9. Serial data link analysis 
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Figure 10. The test stand for debugging 

 We generate random patterns and we download the 

bank in the chips. 

 We generate random data, enriched of good words that 

fire patterns. 

 We simulate the data flow of the AM system calculating 

the expected fired patterns keeping into account the 

knowledge of the bank and the data to be sent in input. 

 We download the input words to the AUX through 

VME and we let them flow to the AM system at full 

speed. 

 We read back by VME the real fired patterns received 

and stored back in the AUX. 

 Finally we compare these patterns with the expected 

ones. 

The Board has been successfully tested using these events in a 

long test of 3 days without any error. It will be installed on the 

experiment to take data for the first time at the end of 2015. 

5. FUTURE EVOLUTION 
The future evolution of the presented system targets two different 

goals:  

 Adapting the existing system to be used by generic image 

processing applications. 

 A technological effort to "miniaturize" the system's PU and 

make it suitable to be used as a coprocessor for speed up of 

offline tracking algorithms. Such an implementation can be 

used for the targeted generic image processing applications. 

Tha AM system fundamentally executes a filtering function that 

can also target images of different nature. The AM-based 

processor can simulate the preliminary stages of image processing 

performed by the brain for vision, such as the identification of 

shape edges [9]. The most convincing models that try to validate 

brain functioning hypotheses are extremely similar to the real time 

architectures developed for High Energy Physics experiments. A 

multilevel model seems appropriate also to describe the brain 

organization to perform a synthesis certainly much more 

impressive than what done in HEP triggers. The AM pattern 

matching has proven to play a key role in high rate 

filtering/reduction tasks [9]. We can test the AM device capability 

as the first level of this process, dedicated to external stimuli pre-

processing. We follow the conjecture that brain works by 

dramatically reducing input information by selecting for higher-

level processing and long-term storage only the input data that 

match a particular set of memorized patterns. The double 

constraint of finite computing power and finite output bandwidth 

determines to a large extent what type of information is found to 

be "meaningful" or "relevant" and becomes part of higher level 

processing and longer-term memory. The AM-based processor 

will be used for a real-time hardware implementation of fast 

pattern selection/filtering of the type studied in these models of 

human vision and other brain functions. Shapes extracted by the 

AM from the images would be analyzed exploiting the computing 

power of the FPGAs to identify clusters of contiguous pixels 

above a programmable threshold [10]. The AM, cooperating with 

the FPGAs could have a new nice application in the field of Smart 

Cameras. As a summary, this multi-chip system will try to 

reproduce the initial stages of the brain visual processing: the 

ASIC will extract object contours and the FPGA will analyse their 

shape. 

The systems miniaturization will be achieved by producing a 

System In Package (SIP) where the FPGA, an external large 

memory and a single AM chip are packaged together [11]. 

6. CONCLUSIONS 
In this paper a powerful, highly parallelized pattern matching 

system is presented. The system exploits dedicated hardware to 

provide excellent performances, reaching resolutions, efficiencies 

and fake rejections typical of offline algorithms. The system 

achieves very  short latencies (few tens of microseconds) and the 

system 's core, the AM chip, a device able to execute 1 Million of 

comparisons each 10 ns, has peak power consumption below 3 W. 

The system itself is several magnitudes smaller than its CPU 

equivalent (4 racks of electronics is able to perform a task that 

would need a farm of thousands of commercial CPUs), 

Communication between chips is guaranteed by a powerful 

network of more than 750 2 Gb/s serial links. The system is 

developed for the ATLAS Fast TracKer Processor but it can be 

adapted to be used for generic image processing applications. The 

system is flexible and a planned future evolution is to be 

"miniaturized" in order to be used as a coprocessor for any kind of 

image reconstruction. Such a coprocessor can target  any artificial 

intelligence process based on massive pattern recognition.  
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