2-D clustering algorithm verification

Akis Gkaitatzis

General Assembly/Executive Board FTK IAPP project Paris, 11 March 2015

Aristotle University of Thessaloniki, Greece

Introduction

Goal: Starting from some input file, process a list of events through firmware and software separately and have an identical result

- Code at TrigFTKSim
- Design follows firmware with three separate parts mimicking each module
- Comparisons have been made after each module to assure 100% accurate flow

Overview

Hardware Chain

- Start with RDO, run transformation
 - Output is a Bytestream File
- Run script on Bytestream
 - Script selects specific RDO from Bytestream
 - Extracts hits from it
 - Sorts the hits for Pixel Detector, for IBL hits are prersorted
 - Hit sorting done by FE chip, double column, row
 - Output is 32bit wordlist suitable for FTK_IM input
- Run on the Hardware
 - Get output as "readable" 32bit words

Simulation Chain

- Start with RDO, run transformation
 - Output is either an TXT_FTKIP or an NTUP_FTKIP
- Find corresponding RDO from cable map, insert it at source code of FTK Simulation
- Run TrigFTKSim
 - Get output as "readable" 32bit words

FW – SW comparison

- Hit Decoder comparison
 - diff for missing words
- Cluster comparison
 - Script creates a data structure for FW, one for SW and detects potential differences
- Centroid Module comparison
 - Same as cluster

Results identical for all tests for Pixel detector

Current Status

- Pixel: Ready ^(C)
- IBL: In progress
 - Hit Decoder Implemented, Debugging Pending
 - Clustering Module Implemented, Debugging Pending
 - Centroid Calculation Module Implementation & Debugging Pending

Current Status – Resolution

Comparison between the previous (ideal) centroid calculation and current (realistic) centroid calculation shows that there is a bug somewhere in the code

- Efficiency for single muons
 - With ideal clustering: 0.9114
 - With realistic clustering: 0.0007

Bounding Box Size

Thank you for listening

