

X-IFU Aperture Cylinder and FPA Filters

Marco Barbera^{1,2}, A. Collura², F. Gatti³, U. Lo Cicero², C. Macculi⁴, T. Mineo⁵, L. Piro⁴, L. Sciortino¹, S. Sciortino², S. Varisco²,

- 1 UNIPA/Dipartimento di Fisica e Chimica, Palermo, Italy
- 2 INAF/Osservatorio Astronomico di Palermo G.S. Vaiana, Palermo, Italy
- 3 UNIGE/Dipartimento di Fisica, Genova, Italy
- 4 INAF/Istituto di Astrofisica e Planetologia Spaziale, Roma, Italy
- 5 INAF/Istituto di Astrofisica Spaziale e Fisica Cosmica, Palermo, Italy

and the ATHENA Italian Consortium

OUTLINE

Quick intro on X-IFU Aperture Cylinder and FPA Filters

Assessment Phase 0-A1 On-going Activities

Assessment Phase A1-A2 Activity Planning

Filters in the X-IFU Functional Block

Why X-IFU needs Filters

1) Radiation Heat Load

The cryostat provides a cooling power of approx 1 µW at the cold stage to dissipate conduction heat load and detector bias power. The IR radiation from the cryostat thermal and structural shields provides an additional heat load.

Radiation Heat Load < 1 % of Conduction Heat Load and Bias Power

2) Photon Shot Noise

The micro-calorimeters are also sensitive to photons at lower energies than X-rays. Although the detector does not trigger on individual low energy photons, the statistical fluctuation of the absorbed energy during the detection time interval, can introduce a degradation of the energy resolution of the detector (photon shot noise).

Photon Shot Noise < 0.2 eV FWHM

3) EMI (up to 10 GHz)

Cryostat shields should also operate as Faraday cages to protect the detector from EMI coming from the read-out electronics and spacecraft environment (telemetry).

Attenuation level TBD

Baseline Design

The baseline design adopted in the ATHENA proposal, based on the IXO-XMS study, consists of 5 identical filters with a total of 2800 Å of polyimide and 2100 Å of aluminum with integrated Polyimide support meshes 10 µm thick (93% open area) on the two outer and larger diameter filters.

Detector Array 15.5 × 15.5 mm²

ASTRO-H 5 filters: Polyimide 4600 Å + Al 4000 Å total, Si mesh on three filters **X-IFU – Baseline** 5 filters: Polyimide 2800 Å + Al 2100 Å total, mesh 93% on the two outer filters

The low energy response of the X-IFU is essentially defined by the AC and FPA filters

Ongoing activities: Design Optimization

A more efficient design, currently under investigation, consists of 5 identical filters with a total of 2250 Å of polyimide and 1000 Å of aluminum. The two outer and larger diameter filters are supported by an Al lithographic mesh 2 µm thick with > 93% open area.

On-going Activities: Simulations

IR transmission

Radiative power onto the detector array

Thermal modeling of the filters inside the cryostat (COMSOL multiphysics)

Ray tracing (mesh imaging, filter tilt

On-going Activities: Material Investigations

Thin foil (Polyimide, Si_3N_4)

Si₃N₄ membranes

Mesh open area 85%,

Filter diameter 100 mm, thickness 650 Å

[Courtesy of HS foils, Finland]

Si₃N₄ membranes 500 Å thick can also be built with diameter up to 20 mm mesh-less, or larger than 50 mm with mesh.

[Courtesy of LUXEL, USA]

Mesh for the larger diameter filters (Al, Si, Polyimide)

On-going Activities: Test samples procurement

- 1. 45nm Polyimide / 20nm Al film, supported by Al lithographic mesh, with ID > 50mm.
 - Mesh to have nominal 92% transmission (Optical Measurement)
 - Mesh Pitch = 200 microns
 - · Calculated Mesh Bar Width = 8 microns
 - Mesh Bar Thickness = 1.4 microns
- 2. 45nm Polyimide / 20nm Al film, meshless, with ID < 50mm.

Witness filters (taken from same lots as Item 1 and 2) mounted on ring frames with ID < 10 mm for Synchrotron X-ray transmission measurements and IR transmission measurements.

Witness filters (taken from same lots as Item 1 and 2 on) mounted on solid frames for X-Ray Photoelectron Spectroscopy and Atomic Force Microscopy.

Assessment Phase 0-A1 Activity Planning

Main Activities

Required Inputs

Performance simulations

- Thermal modeling to derive temperature profile on each filter at equilibrium.
- IR transmission, Radiative load onto detector and NEP
 EM attenuation (Al foil and mesh)

Material investigation

- Thin foil (Polyimide, Si_3N_4 ,)
- Mesh type (Al, Si, Polyimide, ...)

Samples procurement

Preliminary tests

- X-ray transmission XANES and EXAFS vs. T
- Aluminum oxidation (EXAFS and XPS)
- IR transmission vs. T
- EM shielding (< 10 GHz) at T=300 K and T < 1.2 K (TBV)

Thermal/Mechanical IF (Cryostat, Aperture Cylinder) Required EM attenuation in Xband

Assessment Phase A1-A2 Activity Planning

Main Activities

Required Inputs

Filters and Frames preliminary design

Inspection, handling and storage procedures (procurement/construction of shipment boxes, storage cabinet, handling tools, ...)

Filters procurement (1 set representative of the

current flight design + witness samples)

Test measurements

- •Environmental: cooling, vibration, ageing (e.g. atomic oxygen, micro-meteoroids, TBC)
- •Vis/IR transmission, XPS, AFM, ...
- •X-ray transmission

DM filters and frame design

DM filters procurement (2 sets + witness samples)

Visual Inspection

Shipment for integration in the DM

Test measurements on back-up filters and witness samples

Thermal/mechanical IF EM attenuation in X band Vibrational load

> TBC Not covered in present budget

Lithographic Aluminum fine mesh

Example of previously built lithographic Al Mesh by LUXEL:

Mesh Bar Width = 1.5 μ m Mesh Pitch = 24 μ m Mesh Bar Thickness = 0.306 μ m Open Area = 88%

Proposed Al Mesh:

Mesh Bar Width = 10 μ m Mesh Pitch = 600 μ m Mesh Bar Thickness = 2 μ m Open Area = 95%

Model predicts the proposed mesh raises the burst strength of 50 nm polyimide by > 2X

