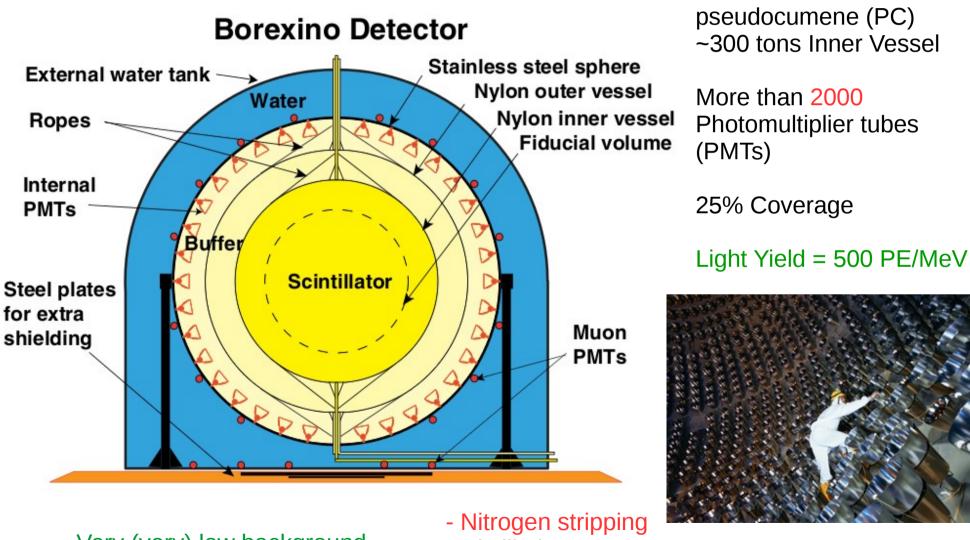

The Borexino Experiment: Recent results and future plans

Nicola Rossi LNGS – INFN 2015, May 15th

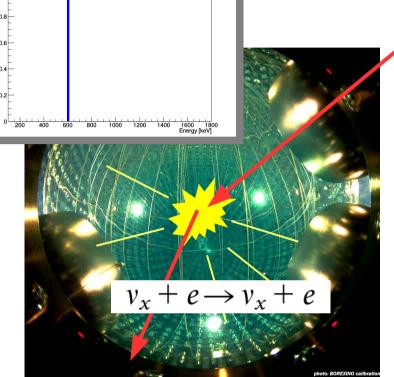
Why the Borexino Experiment? Neutrinos coming from the Sun (< 3 MeV region) - allow the study of neutrino oscillations (PARTICLE-) - provide key information for accurate solar modeling (ASTRO-) 10^{13} 10^{12} $pp [\pm 0.6 \%]$ V 10^{1} ⁷Be $[\pm 7 \%]$ 10^{10} Solar neutrino flux 13N [± 14 %] 10 $pep [\pm 1.2 \%]$ 10^{8} 150[±14%] 107 ⁸B [± 14 %] 10^{6} F[±17%] $p + e^- + p \rightarrow {}^{2}H + v_{e}$ $p + p \rightarrow {}^{2}H$ 10^{5} 10^{4} 99.76% hep [± 30 %] 0.24% 10^{3} 10^{2} $^{2}H + p \rightarrow ^{3}He + y$ 10^{3} 10^{2} 10^{4} 16.70% -2×10-5% 83.30% Neutrino energy [keV] $^{3}\text{He} + ^{3}\text{He} \rightarrow ^{4}\text{He} + 2p$ $^{3}\text{He} + ^{4}\text{He} \rightarrow ^{7}\text{Be} + \nu$ $^{3}\text{He} + p \rightarrow ^{4}\text{He} + e^{+} + v_{e}$ $\rightarrow^{12}C + p \rightarrow^{13}N + \gamma$ $^{13}\,N{\rightarrow}^{13}\mathrm{C}+e^{+}+\nu_{e}$ 99.88% 0.12% **Total Energy** $^{13}C + p \rightarrow ^{14}N + \gamma$ $^{7}\text{Be} + p \rightarrow {}^{8}\text{B} + v$ 7Be + e-1% CNO 99%pp $^{14}N + p \rightarrow ^{15}O + \gamma$ $^{7}Li + p \rightarrow 2 ^{4}He$ $^{8}B \rightarrow ^{8}Be^{*} + e^{+} + v_{a}$ $^{15}\text{O}\rightarrow^{15}\text{N} + e^+ + \nu$ $^{15}\text{N} + p \rightarrow ^{12}\text{C} + ^{4}\text{He}$ ppI ppII ppIII

Borexino Milestones

Borexino is presently the only detector able to measure the solar neutrino interaction rate down to energies as low as ~150 keV and to reconstruct the energy spectrum of the events.

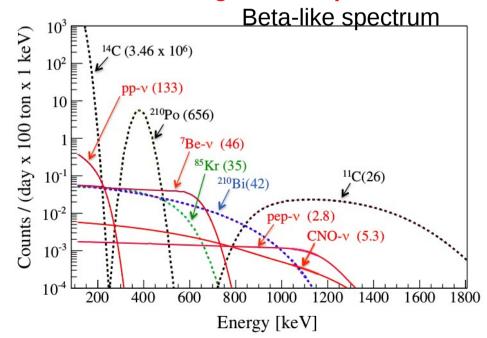

- First measurement of the interaction rate of the ⁷Be 862 keV solar neutrinos with accuracy of the measurement has recently reached 5%
- Exclusion of any significant day-night asymmetry of the ⁷Be solar neutrino flux
- First direct observation of the monoenergetic 1440 keV pep solar neutrinos [9]
- Set of the strongest upper limit of the CNO solar neutrinos flux to date.
- Measure of the ⁸B solar neutrinos with an energy threshold of 3 MeV
- First direct measurement of the pp spectrum.
- 4σ geo-netrinos detection
- Detailed study of the cosmogenics in liquid scintillator

The experiment set-up


13.7 m stainless sphere

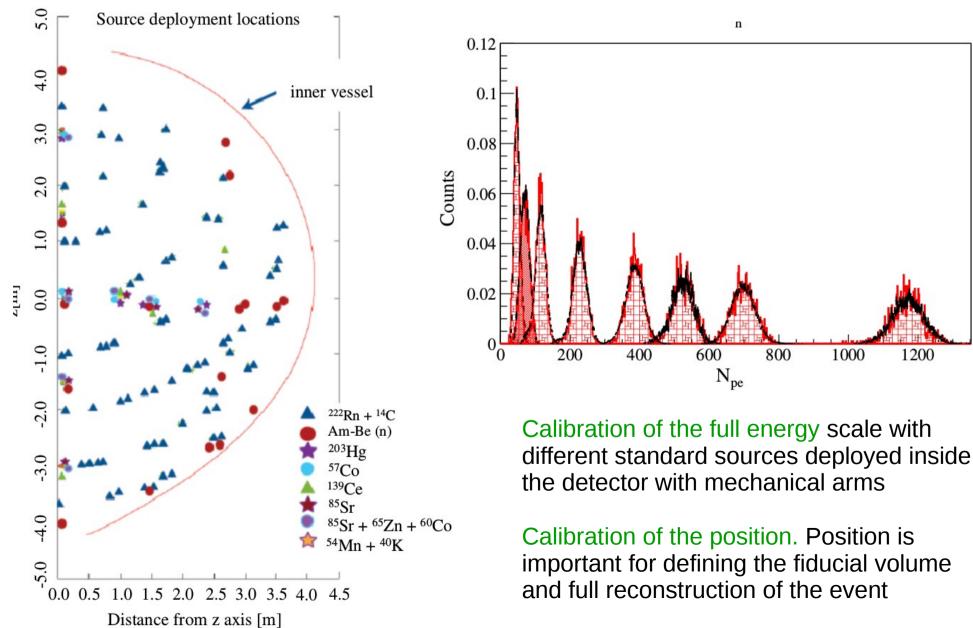
~ 1000 tons of

- Very (very) low background -
- Distillation
- Water Extraction

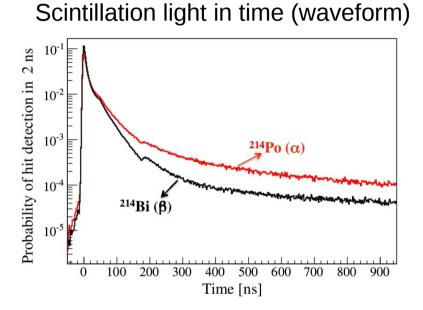

Beta-like Spectrum

The Borexino PMTs detect the scintillation light produced by electrons scattered by neutrinons

This signal is indistinguishable from the natural radioactivity (β - and γ components)

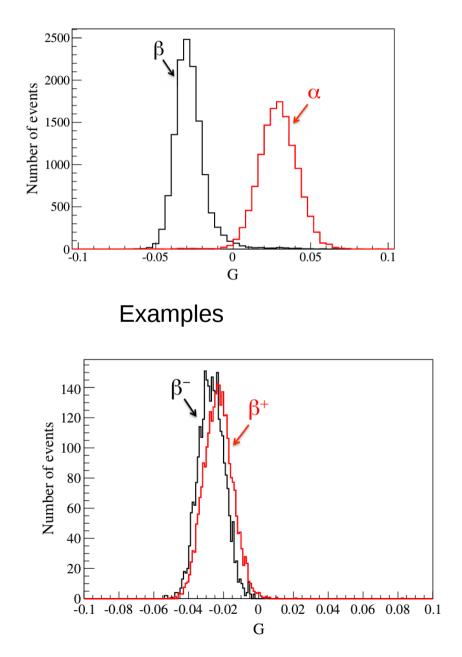

For α and $\beta+$ we can apply the pulse shape discrimination

Crucial point: Extreme low background required!!!

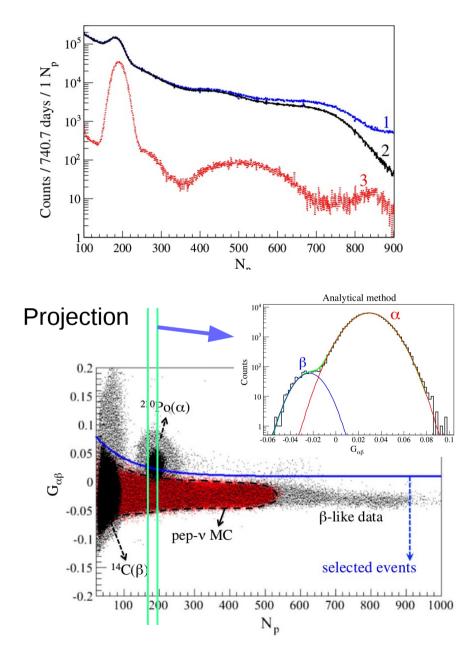


Calibration Campaign

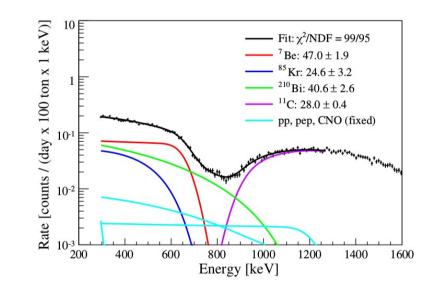
Pulse Shape Discrimination



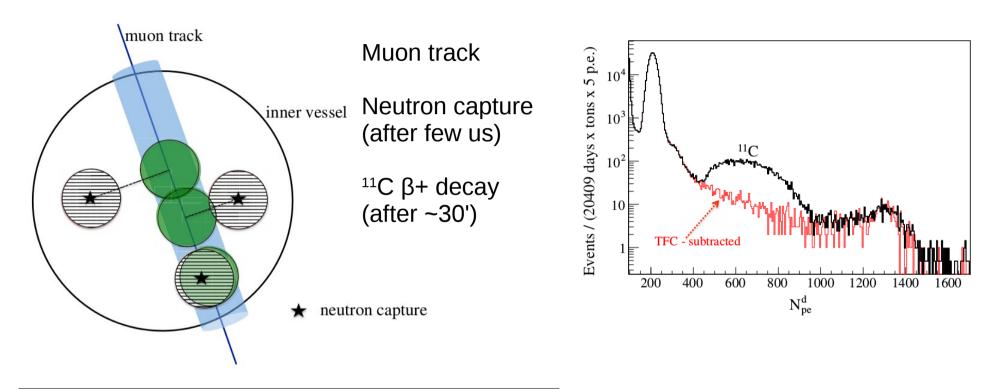
The Gatti's patameter

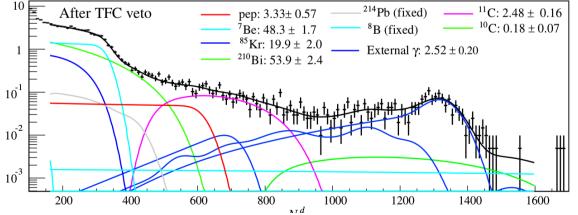

$$G = \sum_{n} e(t_n) w(t_n),$$

where $w(t_n)$ are weights given by


$$w(t_n) = \frac{r_1(t_n) - r_2(t_n)}{r_1(t_n) + r_2(t_n)}$$

The energy spectrum

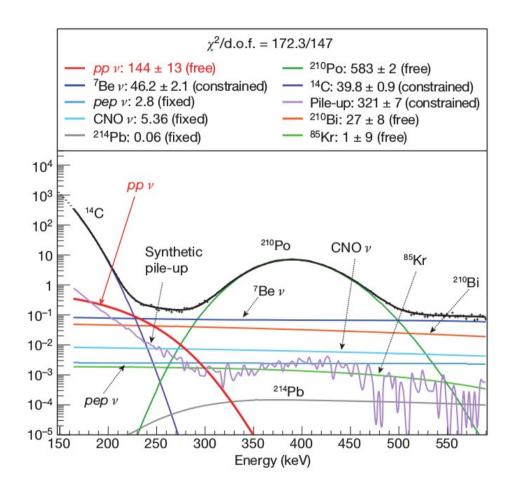



Muon Cut
 Cosmogenics
 Fiducial Volume

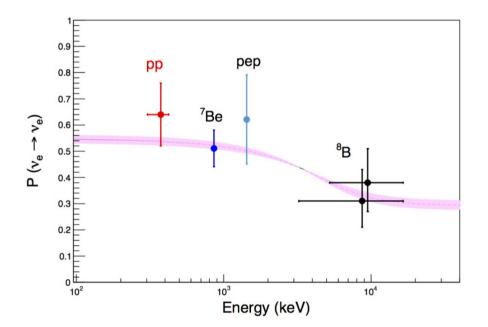
 α/β statistical subtraction of the ²¹⁰Po peak

Threefold coincidence

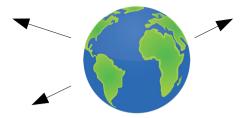
Multivariate Fit

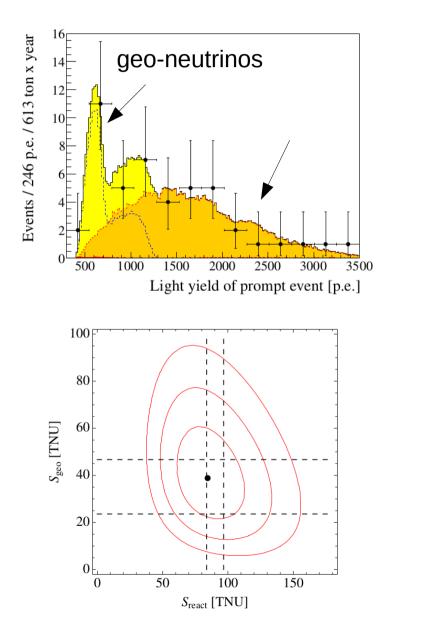

- radial distribution
- beta +/- pulse shape
- TFC subtracted spectrum
- normal spectrum

Published Results

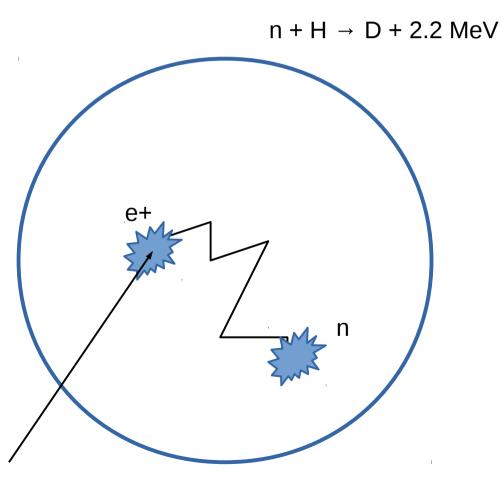


Species		Result [cpd/100 ton]	Expected value [cpd/100 ton]		
рер		$3.1\pm0.6\pm0.3$	$2.73 \pm 0.05 (2.79 \pm 0.06)$		
⁷ Be		$48.3 \pm 2.0 \pm 0.9$	$46.0 \pm 1.5 \pm 1.6$		
⁸⁵ Kr		$19.3 \pm 2.0 \pm 1.9$	$30.4 \pm 5.3 \pm 1.5$		
²¹⁰ Bi		$54.5 \pm 2.4 \pm 1.4$	NA		
¹¹ C		$27.4 \pm 0.3 \pm 0.1$	$28.5 \pm 0.2 \pm 0.7$		
¹⁰ C		$0.62 \pm 0.2 \pm 0.1$	0.54 ± 0.04		
⁶ He		$0.7(0) \pm 0.6(0.5) \pm 1$	0.31 ± 0.04		
Ext. ²⁰⁸ Tl	(N_{pe}^{h})	$1.64 \pm 0.11 \pm 0.01$	NA		
Ext. ²⁰⁸ Tl	(N_h)	$1.94 \pm 0.13 \pm 0.02$	NA		
Ext. ²¹⁴ Bi		$0.67 \pm 0.12 \pm 0.01$	NA		
Ext. ²¹⁴ Bi		$0.41 \pm 0.13 \pm 0.02$	NA		
Ext. ⁴⁰ K		$0.16 {\pm} 0.1 {\pm} 0.03$	NA		
Total Ext. Bkg.		$2.49 \pm 0.2 \pm 0.04$	NA		
	68% Limit	95% Limit	99% Limit	Expected value	
CNO	4	12	19	$5.24 \pm 0.54 (3.74 \pm 0.37)$	
⁴⁰ K	0.11 0.42		0.69	NA	
^{234m} Pa	0.12	0.46	0.75	1.78 ± 0.06	


pp energy spectrum



The first direct observation of the low energy neutrinos coming from the "pp" fusion in the core of the Sun. P_{ee} survival probability in the MSW-LMA scenario with Borexino results only!


Geo-neutrinos

Inverse beta reaction: Prompt / delayed coincidence

$$\bar{\nu}_e + p \to e^+ + n$$

Borexino Phase II

Isotope	Typical abundance (source)	Borexino goals	Borexino-I	Borexino-II			
¹⁴ C / ¹² C, g/g	10 ⁻¹² (cosmogenic)	~10 ⁻¹⁸	2.7·10 ⁻¹⁸	2.7·10 ⁻¹⁸		Phase I	Phase II
²³⁸ U, g/g (²¹⁴ Bi- ²¹⁴ Po)	10 ⁻⁶ -10 ⁻⁵ (dust)	~10 ⁻¹⁶ (1 µБк /т)	(1.6±0.1)·10 ⁻¹⁷	<9.7· 10 ⁻¹⁹ (95%)			
²³² Th, g/g (²¹² Bi- ²¹² Po)	10 ⁻⁶ -10 ⁻⁵ (dust)	~10 ⁻¹⁶	(6.8±1.5)· 10 ⁻¹⁸	<1.2· 10 ⁻¹⁸ (95%)	⁸⁵ Kr (cpd/100ton)	~30	~0
²²² Rn (²³⁸ U), ev/d/100 t	100 atoms/cm ³ (air)	10	1	0.1			
⁴⁰ K, g[K _{nat}]/g	2.10 ⁻⁶ (dust)	~10 ⁻¹⁵	<1.7·10 ⁻¹⁵ (95%)		2105:	10	
²¹⁰ Po, ev//d/t	Surface contamination	~10 ⁻²	80 (initial), T _{1/2} =134 days;	2	²¹⁰ Bi (cpd/100ton)	~40	~20
²¹⁰ Bi, ev/d/100 t	Inequilibrium with ²²² Rn or ²¹⁰ Pb	Not specified	20-70	~20			
⁸⁵ Kr ev/d/100 t	1 Бк/м³ (technogenic, air)	~1	30.4±5 cpd/100t	< compatble with 0	²¹⁰ Po (cpd/100ton)	>2000	~60
³⁹ Ar ev/d/100 t	17 mБк/м ³ (cosmogenic in air)	~1	<< ⁸⁵ Kr				

Best conditions ever!

6 cycles of Water Extraction (~1 year) reduced drastically the background contaminants

Future plans

0. Better accuracy for the solar neutrinos

1. CNO evidence

- ²¹⁰Bi independent constraint from the ²¹⁰Po decay
- Temperature stabilization for preventing ²¹⁰Po mixing
 further purification campaign

2. New Calibration

3. The SOX project

- Search for the Sterile neutrinos with short distance neutrino sources (end of 2016)

- ¹⁴⁴Ce-¹⁴⁴Pr anti-neutrino source (1st stage)
- 95% coverage of the detector anomaly region