

Recent results from the XENON100 experiment and future goals of the XENON project

Marcello Messina Columbia University

IAPS @ Gran Sasso - Particle & Astroparticle Physics Spring Event

The XENON Collaboration

US led and NSF supported since start of project ~120 scientists from 20 institutions

Liquid Xenon for a WIMP Detector

- Good target for both SI (A~131) and SD WIMP-N interactions (¹²⁹Xe & ¹³¹Xe)
- Highest event rate for massive WIMPs
- Unique ability to measure single e⁻ with a two-phase TPC:
 - allows detection of light WIMPs through charge-channel only
- Enables large mass, homogeneous, self-shielded, easily scalable detector.
- Highest ionization and scintillation yield among all noble liquids
- Simultaneous charge and light detection enables ER/NR discrimination
- 3D event localization, double-scatter rejection and self-shielding provide powerful background rejection
- Excellent dielectric, inert, no long-lived radioactive isotopes.

Two-phase Xe Time Projection Chamber

- Particle interaction in the active volume produces prompt scintillation (S1) and ionization electrons
- Electrons which reach the liquid/gas interface are extracted, accelerated in the gas gap and detected as proportional light (S2)
- PMTs in liquid and gas detect S1 and S2
- Charge/light depends on dE/dx: (S2/S1)_{WIMP} << (S2/S1)_{aamma}

1.6

3D-position sensitive detector with particle ID

S2

Marc Weber, MPIK Heidelberg

200 205 210

195

electron recoil

S1

170 175 180 185 100 195 200

nuclear recoil

0.8

0.6

02

0.4

0.2

XENON Meeting Heidelberg 2013

50

n, WIMP

The XENON100 Experiment

TPC with 30 cm drift and 30 cm diameter Drift field in LXe ~ 0.5 kV/cm Amplification field in GXe ~10 kV/cm 161 kg Xe (62 kg as target; 99 kg as active veto) Cooled with 200W PTR outside shield Read-out with 242 PMTs with ~1 mBq (U/Th) S1 yield: 2.3 pe/keV (@122 keV and 0.5 kV/cm) S2 yield: 19 pe/e (single electron sensitive) Kr/Xe level reduced to ppt with cryogenic distillation Passive shielding: water/Pb/Poly/Cu

Aprile et al., Astropart. Phys. 35, 573 (2012)

Event Localization in XENON100

position reconstruction based on top S2 hit pattern

 $\Delta r < 3 \text{ mm}$ $\Delta z < 0.3 \text{ mm}$, $\Delta z < 2 \text{ mm}$ for double-scatter separation

Energy Scale: from measured photoelectrons to keV

XENON100: an ultra-low background experiment

~5x 10⁻³ evts/kg/keV/day after veto cut and before S2/S1 discrimination

Phys. Rev. D 83, 082001 (2011)

WIMP-like Event as seen in XENON100

3.6 PE detected (from ~100 S1 photons)

645 PE detected (from 32 ionization electrons which generated ~13000 S2 photons)

Benchmark results from 225 live days DM search

$H = \begin{pmatrix} 5 & 10 & 15 & 20 & 25 & 30 \\ 0.4 & 0.2 & 0.0 & 0.0 & 0.0 \\ 0.2 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.4 & 0.2 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.4 & 0.2 & 0.0 &$

Particle discrimination

Spatial event distribution

- 2 events observed with 1.0 ± 0.2 events expected
- 26.4% probability of upward background fluctuation
- No significant excess due to signal seen in XENON100 data

Spin-independent WIMP-nucleon coupling

E. Aprile et al. (XENON100), Phys. Rev. Lett. 109, 181301 (2012)

Spin-dependent WIMP-nucleon coupling

E. Aprile et al. (XENON100), Phys. Rev. Lett. 111, 021301 (2013)

Search for solar axions and axion-like dark matter particles

E. Aprile et al. (XENON100), Phys. Rev. Lett. 111, 021301 (2013)

- Origins of axion type particles: galactic dark matter and production in the Sun
- Coupling of axions and axion-like dark matter particles (ALP) to LXe target medium via axio-eletric effect ("absorption" of axion and emission of electron from the atomic shell)
 - Signal expected to appear in the electronic recoil band (as opposed to WIMPs)

Results of axion search using 225 live days data

E. Aprile et al. (XENON100), Phys. Rev. Lett. 111, 021301 (2013)

- S1 energy scale conversion derived from combination of direct measurements of the scintillation light yield as function of energy and the NEST model
- Profile likelihood method to derive g_{Ae} limits and incorporate sys. uncertainties

Limit and sensitivity for axion-like DM (ALPs)

S1-Energy conversion for electronic recoils

Limit and sensitivity for solar axions

XENON1T

From XENON100 to XENON1T

- Two-phase TPC with 1 meter drift and ~1 m diameter electrodes exploiting ~3.3 tonnes of Xe
- Experiment designed to enable a fast upgrade to a larger diameter TPC exploiting ~7 tonnes of Xe
- Detector/associated systems use largely proven technologies developed for XENON100
- New challenges presented by the scale-up addressed with multiple R&D set-ups
- New 3 inch PMTs developed for XENON1T: average QE~40% at 178 nm and low activity
- Detector shielded by water implemented as Cherenkov muon veto
- Developing methods to control the most challenging backgrounds: from ⁸⁵Kr beta-decays (reduce Kr/ Xe < 0.5 ppt) and from ²¹⁴Pb beta-decays (reduce ²²²Rn in LXe to ~1 mBq/kg)
- Schedule: under construction at LNGS started fall 2013
- Science Goal: 2x10⁻⁴⁷ cm² with 2 ton-years of data or by 2017

Science Reach of XENON1T Program

- 100 x more sensitive than XENON100 1000 x more after upgrade
- either exclude much of favored SUSY WIMPs parameter space
- ~100 events from a 50 GeV WIMP at $2x10^{-47}$ cm² with 2 tonne-year

XENON1T Detector

Electrodes: 1 meter diameter wire grids

Field cage: Cu-rings; PTFE reflector

PMTs: 248 x 3" Hamamatsu R11410-21: ~40% QE @ 175 nm; <1mBq/PMT in U/Th

HV: 100kV custom-made feedthrough

TEP mock-up at LNGS

6

8 === L

Construction of the second sec

XENON1T Systems

XENON1T in Hall B of LNGS

Summary

- XENON100 is still in operation after 5yr. New DM data still blinded.
- New calibration sources will be tested also for XENON1T
- XENON1T construction is on schedule
- Commissioning of cryostat and all cryogenic plants completed by July 2015.
- TPC will be installed by summer 2015
- XNON1T data taking is expected by winter 2015. After 2 ton-yr of data sensitivity reach is as shown
- An upgrade of XENON1T is panned to start in 2018

arXiv:1310.8327