

Data recorded: 2012-jun-05 09:58:43.400262 GMT(11:58:43 CEST) Run / Event: 195552 / 61758463

CALIBRATION OF THE CMS PIXEL DETECTOR

AT THE LARGE HADRON COLLIDER

VÁMI, Tamás Álmos

Wigner Research Centre for Physics, Budapest, Hungary

Tracker

- Tracks of electrically charged particles
- Measure the curvature of a particle's trajectory
- Determine the particle's momentum

Functioning Principal of the Pixels

- Electron-hole pairs are created by traversing particle
- Bias voltage induced electric field pulls out charges
- Analog value of charge is read out by Read Out Chip electronics and digitized to an ADC value

Local Reconstruction

- Hits and pixel charges are determined from "digis" using the ADC values
- *digi* = pixel with deposited charge above threshold
- Adjacent digis are combined into clusters

Clusters

Clusters

Approximately 5 pixels in Layer 1

Cluster Calibration: Lorentz Angle

Ref.: Rossi, Fischer, Rohe and Wermes, "Pixel Detectors: From Fundamentals to Applications", Springer (2005)

- The charge carriers are deflected by the Lorentz force due to the 3.8 T magnetic field
 - This deflection is characterized by its angle, which is called the Lorentz Angle (Θ_{LA})

Cluster Calibration: Lorentz Angle

Lorentz Angle as a function of luminosity

Cluster Calibration: Lorentz Angle

Cluster Charge

- Charge & 2D position
- Hit position is determined by cluster charge template fitting
- Find the hits in the fraction of the sensor
- Extremely good resolution

Resolution

- Resolution determines
 the accuracy of the track
 reconstruction
- Hits can be reconstructed with 11.8 μm accuracy on Layer 2, merely a fraction of the 100-by-150 μm 2 pixel cell size

Bad modules: SiPixelQuality

- Permanently bad modules are identified by measuring the occupancy of each module
- Using this method we create a map, where we identify the not working sensors
- This information (stored in the SiPixelQuality database) is used during tracking

Efficiency

- $Hit\ Efficiency := \frac{\#found\ clusters}{\#expected\ clusters}$
- Approximately 99.7%, except the first layer
 - in fiducial region
 - excluding dead components
- Dynamic efficiency loss (here the buffer saturates)
- Single Event Upsets

Single Event Upsets (SEUs)

- Radiation may flip the memory state of the Read Out Chip $(0 \leftrightarrow 1)$
- This effect is fixed by reprogramming the Read Out Chips
- Using an automatic online monitoring and recovery system we could improve the efficiency (0.05% per hour)

Occupancy for ROCs undergoing single event upsets in Pixel detector for run 207273

Conclusion

- Using these calibrations the Pixel Detector works with high accuracy
- Its resolution is in the order of 10 μm in the transverse plane
- Excellent results in detector reliability and tracking performance
- The efficiency of the detector was >99% in 2012
- We can monitor the malfunctions in order to improve the efficiency

Importance

Importance

ank you for lister

E-mail: vami.tamas@wigner.mta.hu