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Fusion Energy - What is it?

Nuclear fusion is the fundamental source of energy in the Universe.
All of our sources of energy (apart from nuclear fission and geothermic),
involve some form of ’recycling’ of the energy produced in the core of the
stars by nuclear fusion.
Main nuclear fusion reactions occurring in the stars are

Proton-Proton Reaction, 4p −−→ 4
2He + 2 νe + 2 γ (13.36MeV)

Triple-alpha process, 3 4
2He −−→

8
4Be + 12

6C + 2 γ (total 7.367MeV)

On Earth, we would like to create artificial controlled thermonuclear fusion
reactions, with the purpose of producing electrical energy.
The most likely candidate reactions are

2
1D + 3

1T −−→
4
2He (3.5MeV) + n0(14.1MeV)

2
1D + 2

1D −−→
3
1T (1.01MeV) + p+(3.02MeV)
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Advantages of Fusion Energy - Why do we need it?

It’s abundant

The world energy consumption is predicted to double by 2050. The
amount of energy that can be produced with nuclear fusion is almost
limitless. Current reserves of deuterium would last thousands of years.

It’s clean

No CO2 emission would be involved in the production of energy with
thermonuclear fusion. There is no risk of nuclear fall-out and the
radiation contamination is minimal.

It’s fair

The basic fuel will be deuterium, readily available in sea water. No
more wars for control of energy resources. There are no military
application of a nuclear fusion power plant.
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Fusion Energy - How do we get it?

Achieving thermonuclear fusion is relatively easy by itself, it suffices to
heat a plasma to high enough temperatures that ions can overcome
the Coulomb barrier. Problems arise in:

1 Confinement

2 Control

3 Stability

4 Efficiency

The Lawson criterion

According to John Lawson’s pioneering analysis, the product of electron
density ne , confinement time τE and electron temperature Te must exceed
3 · 1021 keV s/m3 in order to produce net energy from nuclear fusion.
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The tokamak concept

A tokamak is a doughnut-shaped device in which plasma is confined by
toroidal and poloidal magnetic fields, generated by conducting coils and
a poloidal current induced in the plasma.
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The Scrape-Off Layer (SOL)

The scrape off layer is defined as the region of the tokamak characterized
by open magnetic field lines.
The magnetic field lines that cross the tokamak’s walls are responsible for
a significant increase in particle - and thus heat! - flux.
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The GBS simulations

The GBS code is specifically tailored to model the plasma dynamics in the
scrape-off layer.
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The GBS simulations

The GBS code has been benchmarked against several experimental devices.
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The Braginskii Equations

Can be derived by taking moments of a Maxwellian distribution
describing an ensemble of particles.

Model the plasma dynamics in edge conditions well.

Conservation of mass

dn

dt
+ n∇ · ve = 0 (1)

Momentum Equation

men
dve
dt

+∇ · πe + en(E + ve × B) = F (2)

Energy Flux Equation

3

2

dpe

dt
+

5

2
pe∇ · ve + πe : ∇ve +∇qe = We (3)
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Reduction to the drift motion

Approximation regime

∂

∂t
≈ ρi

L⊥
� ωci , ωciτ � 1 (4)
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Error from Input Parameter Uncertainty - What is it?

Uncertainty on the output observables stemming from the error on
the physical input parameters.

Example

Say our pressure equilibrium numerical values are 20% off the experimental
data. Can this be justified by the uncertainty in determining the exact
value of the plasma density (and other parameters) as an input of the
code?

Inapplicability of Monte Carlo simulations

When dealing with simpler codes, the answer could be found out by using
Monte Carlo simulations. However in the GBS case this is not possible due
to very long computing times.
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How does the spectral method work?

Choose a set of basis functions. In our case, Chebyshev polynomials
of first kind, defined as Tn(x) = cos(n · cos−1(x)).

Expand the solution of the differential equation as
f (t) =

∑K
k=0 akTk(τ), where the ak ’s are the coefficients of the

Chebyshev polynomials, and τ represents time in Chebyshev space.

Derive analytically a system of algebraic equations for these
coefficients.

Find numerically the solution of this system of algebraic equations.
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Advantages of the spectral method

Extremely high accuracy

The theoretically proved minMax property of Chebyshev-polynomials
based spectral methods ensures that the solution found has the smallest
possible infinite norm of the error given the chosen degree of the
polynomial.

Speed

Very likely faster than finite difference codes when we don’t want to
resolve the oscillation on the equilibrium configuration. (There is good
evidence, but a comprehensive quantitative comparison is still to be carried
out)

Semi-analytic

The solution is found as a set of coefficients that multiply Chebyshev
polynomials, thus it is readily available for further manipulation.
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Spectral method example

Differential form of equation

∂∇2φ

∂t
=

c

B0

∂φ

∂r

∂∇2φ

∂z
− c

B0

∂φ

∂z

∂∇2φ

∂r
(5)

Algebraic form of equation

∂g

∂t
= A

K∑′

k=0

X−1∑′

x=0

Y∑′

y=0

X∑
ξ=x+1
ξ−x=odd

2ξakξyTk(τ)Tx(χ)Ty (φ) ·
K∑′

k ′=0

X∑′

x ′=0

Y−1∑′

y ′=0

Y∑
σ=y′+1
σ−y′=odd

2σbk ′x ′σTk ′(τ)Tx ′(χ)Ty ′(φ)+

−A

K∑′

k ′=0

X−1∑′

x ′=0

Y∑′

y ′=0

X∑
ξ=x′+1
ξ−x′=odd

2ξbk ′ξy ′Tk ′(τ)Tx ′(χ)Ty ′(φ) ·
K∑′

k=0

X∑′

x=0

Y−1∑′

y=0

Y∑
σ=y+1
σ−y=odd

2σakxσTk(τ)Tx(χ)Ty (φ)

Chebyshev polynomials linearisation & Time Integration

Tk1(τ) · Tk2(τ) =
Tk1+k2

(τ)+T|k1−k2|(τ)

2
∂g(t)
∂t =

∑K
k=0 ckTk(τ) =⇒ g(t) =

∑K
k=0(ck−1Tk−1(τ)− ck+1Tk+1(τ))

∂g(t)
∂t =

∑K
k=0 ckTk(τ) =⇒ g(t) =

∑K
k=0(ck−1Tk−1(τ)− ck+1Tk+1(τ))

Lucio M. Milanese, Fabio Riva, Paolo Ricci Imperial College - EPFL 8 May 2015 15 / 24



Spectral Method Examples

Non-linearity

We can solve non-linear differential equations with the spectral method.

t
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Figure : Solution to the equation dy/dt = y 2
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Extremely high accuracy

It’s much easier to get very accurate results with the spectral method than
with any finite difference or finite elements methods.

Spectral Solution of Poisson's equation
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Figure : Solution to the Poisson equation ∇2φ(x , y) = (x2 + y 2− 2)exp
(
− x2+y2

2

)
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Spectral Method Examples

Benchmarking (stationary solution)

The code developed to solve the Braginskii equations spectrally has been
benchmarked against available analytic solution.

Spectral Solution
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Figure : Stationary solution to the equation ∂g
∂t = ∂g

∂x
∂(∇2

⊥)−1g
∂y − ∂g
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Benchmarking (dynamic solution)

The method of manufactured solutions has been used to test the code for
description of plasma dynamics.

Spectral Solution
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Figure : Time-dependent solution of ∂g
∂t = ∂g
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Overall code performance evaluation

Surface Response Methodology

The main idea is to create a map which relates the main input parameters
- with appropriate weightings - to the observable whose uncertainty we are
interested in.

A set of dedicated numerical experiments is necessary to create this map.
These investigations can be carried out in a fast and accurate way with
the new spectral code developed.
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Overall GBS code performance evaluation

Quantitative performance evaluation

One can quantitatively evaluate the overall performance by putting
together the single ”marks” for the different output parameters in a single

metric χ =
∑

j RjHjSj∑
j HjSj

, where Rj =
tanh[(dj−d0)/λ]+1

2 .

Simulation uncertainty estimation

In the formula to evaluate the distance between numerical results and

experimental data dj =

√
1
Nj
.
∑Nj

i=1
(ei,j−sj,i )2

∆e2
j,i+∆s2

j,i

This project has focused on finding accurate ∆2si ,j .
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Metric use example

Overall evaluation

Performance on the quality of simulations of different observables are
combined together.

Configuration Electric Potential Density Temperature Metric χ

Symmetric Gaussian 0.958 0.986 0.945 0.974
Non-Symmetric Gaussian 0.825 0.910 0.854 0.879
Sinusoidal Perturbation 0.756 0.578 0.658 0.687
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Thanks for the attention!
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