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Effective field theory (1)

• An Effective Field Theory (EFT) is a type of approximation to (or 
effective theory for) an underlying theory, such as a quantum field
theory.

• An EFT includes the appropriate degrees of freedom to describe
physical phenomena occurring at a chosen length scale or energy
scale, while ignoring substructure and degrees of freedom at shorter
distances (or equivalently at higher energies). Since EFTs are not valid
at small length scales, they do not need to be renormalizable.

• EFTs are discussed in the context of the renormalization group where
the process of integrating out short distance degrees of freedom is
made systematic. This is done for example through the analysis of 
symmetries: if there is a single mass scale M in the microscopic
theory, then the EFT can be seen as an expansion in 1/M. The 
construction of an EFT accurate to some power of 1/M requires a 
new set of free parameters at each order of the expansion in 1/M.



Effective field theory (2)

• General Relativity fits naturally into the context of EFT: 
gravitational interactions are proportional to energy and are easily
organized into an energy expansion, where the expansion scale is
the Planck length lP.

• Treating gravity as a quantum EFT, allows a natural separation of 
the (known) low energy quantum effects from the (unknown) high 
energy effects. Within this framework, gravity is a well behaved
quantum field theory at ordinary energy. The leading long-
distance quantum corrections are independent of the eventually
high energy theory of gravity and therefore represent necessary
consequences of quantum gravity.



Introduction: Restricted three-body problem

The restricted three-body problem:

• Body A with mass α.
• Body B with mass β<α.
• A and B move under Newtonian

potential considered without
correction.

• Planetoid P with mass m
such that m<<α, m<<β.  

• Center of mass C.
• P is subjected to the quantum 

corrected Newtonian attraction
of A and B. Where:



Quantum corrected Lagrangian (1)

The quantum corrected Lagrangian describing the motion of P
assumes the form:

Where:



Quantum corrected Lagrangian (2)

Choice of constants:

+ choice − choice

We define U as T0 – V = GU, so that

N. E. J. Bjerrum-Bohr, J. F. Donoghue, and B. R. Holstein, Phys. Rev. D 67, 084033 (2003).

J. F. Donoghue, Phys. Rev. Lett. 72, 2996 (1994).



Feynman diagrams (1)

+ choice (scattering processes):

triangle diagrams



Feynman diagrams (2)

Box and crossed box diagrams

Double-seagull diagram



Feynman diagrams (3)

- choice (vertex and vacuum polarization diagrams )

One loop radiative corrections to the gravitational vertex (a)-(c) and 
vacuum polarization (d),(e).



Equilibrium conditions

Derivative of U:

with

• y=0           equilibrium points on the line joining A to B

• λ =0           equilibrium points not lying on the line joining A to B



Classical Lagrangian points

Lagrangian points for the Moon-Earth system



Equilibrium points on the line joining A to B (1)

Divide the line y=0 into three regions

• R1 : x  (-∞,-a)

• R2 : x  (-a,b)

• R3 : x  (b,+∞)

In each region U(x,0) has one equilibrium point:



Equilibrium points on the line joining A to B (2)

Recall that

We also have that

the condition y=0 guarantees the vanishing of         and leads to the 
algebraic equation



Equilibrium points on the line joining A to B (3)

which is solved by the two roots

Furthermore we have

Algebraic ninth degree equation

(where )



Equilibrium points on the line joining A to B (4)

where

with



Equilibrium points on the line joining A to B (5)

• In Newtonian theory U,xx|y=0 >0. In the quantum case we have

• In Newtonian theory -a-l < l1 < -a . In our model we have

− choice

+ choice



Equilibrium points on the line joining A to B (6)

• Classically, L2 lies between C and B. Thus

• In Newtonian theory <0. In quantum case 

+ choice

condition that can be violated
with − choice



Equilibrium points on the line joining A to B (7)

• We also note that at L2 we have

• Classically U(l2) > U(l3) > U(l1). 
+ choice

+ choice j = L2B = BQ3

f = Q1C = CL3



Equilibrium points not lying on the line joining A to B (1)

Two equations of fifth degree describing equilibrium points

where



Equilibrium points not lying on the line joining A to B (2)

There are two equilibrium points not lying on the line joining A to B,

which we write in the form L4  ( x(l),y+(l) ) and L5  ( x(l),y-(l) ), where

In Newtonian theory at the points L4 and L5 the planetoid is at the 
same distance from A and B. Our quantum corrected model predicts
tiny displacement from this case.  



Equilibrium points not lying on the line joining A to B (3)

For the Sun-Earth system the quantum corrected planetoid
coordinates are 

For the Earth-Moon system we have

fifth decimal
digit

fourth
decimal digit

tenth decimal
digit

eleventh
decimal digit



Stability of equilibrium points

Using first-order stability criterion, for quantum case we have found
that

• Points L1, L2 and L3 remain points of unstable equilibrium
provided we adopt the + choice.

• Points L4 and L5 remain points of first-order stable equilibrium if
we use the  + choice.



Analytical solution of fifth degree equations (1)

Fifth degree equation for 1/r

We pass to dimensionless units by defining

where:



Analytical solution of fifth degree equations (2)

By means of a cubic Tschirnhaus transformation

Our equation becomes

We require that

Bring-Jerrard quintic equation



Analytical solution of fifth degree equations (3)

Write the Bring-Jerrard equation in the following way

Define the number

Rescaling γ according to                    we obtain



Analytical solution of fifth degree equations (4)

if χ is choosen in such a way that

we obtain the quintic

with



Analytical solution of fifth degree equations (5)

if then the roots of the quintic for        are obtained from the 
higher hypergeometric functions of order 4   



Analytical solution of fifth degree equations (6)

where

and the coefficients



Analytical solution of fifth degree equations (7)

we have that



Analytical solution of fifth degree equations (8)

With this refined analysis, we have obtained for the planetoid
coordinates in the Earth-Moon system the corrections

The numerical method gives



Introduction: Full 3-Body problem

• Bodies A1, A2 and A3 with 

masses m1, m2 and m3

• u=(x,y,z) and v = (ξ,η,ζ)

• H center of mass of A1 and A2

• Equation of motion :

where (α1=m1 /(m1+m2), α2=1-m1):



A choice of quantum corrected potential

the potential U(r1, r2, r3) assumes the form

Therefore we have



Hamiltonian equations of motion (1)

Hamiltonian equations of motion read as

where:



Hamiltonian equations of motion (2)

• At this stage we can exploit the Poincaré theorem: 

if our Hamiltonian equations, which depend on a parameter ρ=lP, 
possess for ρ=0 a periodic solution whose characteristic exponents are 
all nonvanishing, they have again a periodic solution for small values
of ρ. 

• In our case for ρ =0 we revert to three-body problem in post-
Newtonian mechanics.

A. Chenciner and R. Montgomery, Ann. Math. 152, 881 (2000).

G. Huang and X. Wu, Phys. Rev. D 89, 124034 (2014).



Variational equations (1)

Assume a periodic solution of our Hamiltonian equations has been
found

Consider small disturbances of these periodic solutions

Variational equations



Variational equations (2)

We try to integrate variational equations by setting

the constant α is called characteristic exponent.

If, when ρ=0, the characteristic exponents are vanishing, then for 
small but nonvanishing values of ρ we have the asymptotic expansions



Variational equations (3)

If the Hamiltonian has the asymptotic expansion

,

by virtue of the previous expansions, variational equations give



Variational equations (4)

In our case we have

Therefore, on writing

we have found, for all i=1,…,6 the general form of variational
equations



Variational equations (5)

where

while for higher-order terms we find the inhomogeneous equations



Variational equations (6)

What if the characteristic exponent does not vanish at ρ=0?

In that case the asymptotic expansion should be generalized by 
adding α0

Variational equations become



Variational equations (7)

The periodic solutions

can be taken to be solutions of equations

when ρ = 0 . Therefore the matrix M0
ik should be evaluated along

the solutions of the coupled equations



Variational equations (8)

The desired periodic solutions can be written in the form



Displaced periodic orbits (1)

displaced periodic orbits describe the dynamics of the planetoid
(e.g. a solar sail) in the neighborhood of the Lagrangian points.



Displaced periodic orbits (2)

Vector dynamical equation for the solar sail

where



Displaced periodic orbits (3)

Linear variational equations at Lagrangian points L4 and L5

Assume  that a solution is periodic of the form



Displaced periodic orbits (4)

linear system for the four amplitudes



Displaced periodic orbits (5)

• Time evolution of ξ for L4 in Newtonian case

• Time evolution of ξ for L4 in quantum-corrected model



Displaced periodic orbits (6)

• Time evolution of η for L4 in Newtonian case

• Time evolution of η for L4 in quantum-corrected model 



Displaced periodic orbits (7)

Periodic orbits at linear order

around L4 in Newtonian theory

Periodic orbits at linear order

around L4 in the quantum case



Displaced periodic orbits (8)

Linear variational equations at Lagrangian points L1, L2and L3

periodic solution



Laser ranging technique (1)

• Very short pulse of light is fired towards satellites equipped with 
cube corner retro-reflectors.

• The round trip time of flight is measured. 



Laser ranging technique (2)

Key Performance Indicators to design an appropriate laser ranging
test mass:

• Adequate laser return signal.

• Acceptable rejection of the unavoidable nongravitational
perturbations.

• Optimization/minimization of S/M.

• Time-durability of the test mass to prolonged measurements.



Conclusions and open problems (1)

• We have seen some numerical values that give an idea about the 
tiny quantum corrections on the equilibrium points of the 
planetoid. In the Earth-Moon system these corrections are of    
8.8 mm on the abscissa and of 4 mm on the ordinate, whereas for 
Sun-Earth system there are larger corrections.

• We have derived a recursive scheme for the analysis of variational
equations of the full three-body problem, although we have not
solved them explicitly.

• The evaluation of periodic solutions of the full three-body 
problem within the post-Newtonian regime is still in its infancy: 
only results for the circular restricted three-body problem are 
available so far.

• We have shown that displaced periodic orbits around
unperturbed circular motion exist at all libration points also in the 
quantum-corrected case.



Conclusions and open problems (2)

• Satellite laser ranging/lunar laser ranging represent valid
techiques to measure the quantum effects. Detecting tiny
departures from classical gravity is a challenging task and the 
years to come will hopefully tell us whether the scheme
described may have observational consequences in orbital
motion physics and in the experimental search for quantum 
gravity effects.

• The precise characterization of regions of stability and instability
of displaced periodic orbits is a fascinating problem for the years
to come.

• The evaluation of the amount of perturbation of a fourth body on 
the position of Lagrangian points (in a purely classical scheme) is
an open problem.


