THz Imaging

F. Giorgianni¹, M. Daniele², E. Chiadroni³ and S. Lupi¹

¹INFN and Department of Physics, 'La sapienza' University of Rome

²INFN-LNF and Department of Physics, Aquila University

³INFN-LNF

Istituto Nazionale

Laboratori Nazionali di Frascati

Terahertz Light

Frequency: **0.1** − **10** THz **?**

Wavelength: 3 mm − 30 µm 🖸

Energy: 0.41 – 41 meV

Wavenumber: 3.3 – 333 cm-1?

Temperature: 1 – 100 K

Technology Review (MIT) 2004:

THz selected as one of "10 emerging technologies that will change your world"

THz Imaging and Spectrocopy

Why TeraHertz?

- Low energy (meV), non-ionising radiation (unlike for example X-rays Imaging > 10 keV)
- 2. Many materials are transparent to THz (good penetration)
- 3. Many molecular rotational and vibrational absorption modes (Spectral Fingerprinting)
- 4. Water is strong absorber and Metals are opaque –possible contrast agents

THz imaging provides different / new information respect to IR, VIS, UV, X-Ray Imaging

F. Giorgianni

THz Imaging and Spectrocopy

Why not TeraHertz?

- 1. Difficulties in developing of high intensity THz sources and efficient detectors
- 2. Lack of efficient materials and devices to manipulate THz Radiation
- 3. Water absorption could be a problem

- Solid State Oscillators
- Gas and Quantum Cascade Lasers
- Free electron based sources:
 - Free Electron Laser (FEL)
 - Back Wave Oscillator (BWO)
 - Coherent Transition Radiation (CTR)
 - Coherent Synchrotron Radiation (CSR)

Control Laser Based THz sources:

Optic Processes:

Optical rectification, Cherenkov Radiation (Organic/Inorganic Crystals)

Optoelectronic Processes:
 Photoconductive, photo-Dember,
 Photoconductive Mixing

Pulsed THz Light for Imaging

Unique Properties Using Ultrafast (subpicosecond) THz Pulses

- Both frequency and time (depth) information
- Able to form 2+1D images with time information (time of flight)
- Ultrafast (< ps) and broadband images: possibility of implementation subpicosecond snapshot imaging (time-resolved imaging)
- VIS Image **Coherent** detection to improve signal to noise ratio **Example** E_1^{out} E_2^{out} E_3^{out} n1 Chip **n2** n3

F. Giorgianni THz image for different times of flight

THz imaging: biomedical application

3D and Composition Information in a Single Scan

Time Of Flight Image

Absorbition Image

Skin Tissue

Visible Image

THz Image

F. Giorgianni

THz imaging: biomedical application

A. J. Fitzgerald et al

Human Breast Tumors

F. Giorgianni

THz Imaging: Cultural Heritage

THz Imaging provides new information

- Noncontact, nondestructive and noninvasive technique
- Chemical composition of selective layers

Depth-Selective Imaging

- Image of underlying, obscured underdrawing, underpainting and modifications
- Imaging of internal structure: to evaluate the deep of possible cracks

VIS Image

THz Image

Virgin of Vendome (France)

Varnish UV VIS IR THz X-Ray Painting Drawing Preparation (glue, gesso..) Support (wood, canvas, paper..) F. Giorgianni

VIS Image

THz Image

Sacrifice to Vesta (Goya)

THz Imaging: Industrial Applications

Some Applications:

- Noninvasive Device Testing (Semiconductor Core Components)
- Sub-surface cracks and homogenity
- Non-destructive and user-safe testing method for the food industry
- Characterization of pharmaceutical medications

THz Image

Fast Screening of Failed devices

F. Giorgianni

Terahertz Near-Field Nanoscopy

THz Imaging beyond the diffraction limit

Standard THz imaging resolution $\sim 100 \text{ um}$

Ultrafast Pulsed Sources for THz Imaging at INFN-LNF and Roma1

Laser based Sources:

Free electrons based Source

Coherent Transition Radiation (CTR)

	Average THz Power	THz Energy per Pulse	Repetition Rate	Pulse duration	Spectral Range	Lock-in Freq. Oper.
PCA	1 uW	~pJ	80 MHz	~ 1	∼ 1 THz	10 KHz
NLC	1 uW	~ pJ	80 MHz	< 0.15	> 3 THz	~ 1 KHz
CTR	300 uW	>30 uJ	10 Hz	< 0.2	> 3 THz	

Conclusions

Advantages of THz imaging:

- 1. Non-ionising radiation (unlike for example X-rays Imaging)
- 2. Nondestructive evaluation (low energy)
- 3. Good penetration in many Materials (Comparable with X-ray)
- 4. Posibility to implement Time-Resolver Imaging (subpicosecond duration)
- 5. Pulsed broadband (polychromatic) sources for imaging
- 6. Molecular Fingherprint (Chemical Imaging)
- 7. Contrast agents: Water and Metals
- Lower resolution compared to the other techniques (100 um) -> Nearfield imaging

THz imaging provides different / new information

