

Methods for Measurement of the Top Quark Mass at the Tevatron

Sandra Leone (INFN Pisa)

Top mass workshop Frascati, May 7, 2015

The Fermilab Tevatron

Run II: $\sqrt{s} = 1.96 \text{ TeV}$, 10 fb⁻¹ on tape Tevatron stopped operating on September 2011 after a 26 years career

The birthplace of the top quark, observed in 1995 by CDF and D0

Announcement of top quark discovery: March 2nd, 1995 ⇒Top is twenty!!

Fermilab, Batavia, IL USA

To celebrate the 20th anniversary of the discovery of the top quark, we will review observations and discoveries made at both the Tevatron and the LHC, the theoretical context and explore the indications for physics beyond the standard model.

For more information, visit: http://indico.fnal.gov/event/TopAtTwenty15

Small cross section! \Rightarrow Observation in ~ 67 pb⁻¹ \Rightarrow ~ 500 ttbar pairs produced per experiment

 \Rightarrow In 10 fb⁻¹ \Rightarrow ~ 73500 ttbar pairs produced

Top mass workshop, Frascati, May 6 2015

Top mass: what do we measure?

- 20 years ago, CDF & D0 first assembled all the pieces needed to discover the top
 - \Rightarrow The strategy to study the top quark remains the same today
- Top quark mass is not "directly measured":
 - ⇒ we do kinematic reconstruction of final state objects (leptons, jets, and missing transverse energy)
 - \Rightarrow fit to invariant mass distribution
- Experimental accuracy of M_{top}:
 - ⇒ Measurement ⇔ comparison of data with Monte Carlo
 - \Rightarrow we measure the mass that is implemented as input in the MC
 - ✓ MC top mass is unique for each MC
 - measured mass is not strictly model independent
- Situation at the Tevatron:

 $\Rightarrow \underline{\delta M}_{top} = \pm 0.64 \text{ GeV/c}^2 (< 0.4\%)$

Conceptual uncertainty of about 1 GeV/c² when relating the MC mass to a field theory mass....

Top mass workshop, Frascati, May 6 2015

Need accurate detector simulation

Backgrounds

- ■The Tevatron is a hadron collider:
 →Very high backgrounds!
- Backgrounds can bias the top mass measurement

Backgrounds & B-tagging algorithms

- The Tevatron is a hadron collider:
 →Very high backgrounds!
- Backgrounds can bias the top mass measurement
- Control backgrounds using b-tagging information

- CDF: Secondary Vertex tagger (SVX)
 - reconstructs secondary vertex
 - significance $L_{2D}/\sigma > 7.5$
- D0: Neural Network tagger
 - combines properties of displaced tracks and secondary vertex
 - 9 variables total

Channel	B-tags	S:B	Perm.
0.1	≥0	1:4	2
Dilepton	≥ 1	4:1	2
Lepton+jets	≥0	< 1:1	12
	≥ 1	2.5:1	6
	≥2	10:1	2
All-hadronic	≥ 1	1:4	30
	≥2	4:1	6

At the same time:
 → help combinatorics!

Jet Energy Correction

Determine true "parton" (or "particle") E from measured jet E

The correction factor depends on jet E_T and η and is meant to reproduce the average jet E_T correctly, (not to reduce the jet fluctuations around this mean)

Corrections for generic jets:

- \Rightarrow Use Zee for em energy calibration
- \Rightarrow Absolute corrections (γ -jet balancing)
- ⇒ Relative corrections (central-forward calorimeters, dijet balancing)

Out-of-Cone: correction to parton Underlying event "top-specific correction" to light quark jets and b-jets separately

JES uncertainty

Top mass workshop, Frascati, May 6 2015

"In situ" jet energy calibration

Simultaneous fit to Mjj and Mtop using top mass and JES templates for lepton plus jets and all hadronic events:

 M_t (true M_{top} , JES), M_{jj} (true M_{top} , JES)

- Identify jets coming from W
 - All non-btagged jets pairs are taken into account equally.
 - 1/3/6 m_{jj} per event with 2/1/0 b-tag
- Reconstruct their invariant mass m_{jj}
- m_{ii} strongly dependent on JES
 - Make Mjj templates by varying JES
 - Fit data with Wjj to measure JES!
- M_w uncertainty is negligible (< 50 MeV)
- m_{jj} mostly independent of M_{top}
- This scale is applied to b-jets and light-quark jet

Top Mass Measurement: Methods

- The measurements shown today are based on:
 - \Rightarrow Template method
 - \Rightarrow Matrix Element method
- Template method:
 - \Rightarrow Exploit dependence on m_t of kinematic observables $\ xi$
 - \Rightarrow Create "templates" = distributions of xi using MC
 - ✓ For signal: xi=xi(mtop)
 - ✓ For background
 - \Rightarrow Maximise consistency with the
 - observation, given Mt
 - \Rightarrow Advantages:
 - ✓ Few assumptions
 - ✓ fairly straight forward
 - \Rightarrow Drawback:
 - ✓ Sub-optimal sensitivity

Top Mass Measurement: Methods

- The measurements shown today are based on:
 - \Rightarrow Template method
 - \Rightarrow Matrix Element method
- Matrix element method:
 - \Rightarrow Directly calculate the event probability as:

$$\begin{aligned} P_{\rm evt}(m_{\rm top}) \propto f P_{\rm sig}(m_{\rm top}) + (1-f) P_{\rm bgr} \\ P_{\rm sig}(m_{\rm top}) \propto \int ... {\rm d}\sigma_{t\bar{t}}(m_{\rm top}) & {\rm d}\sigma_{t\bar{t}} \propto |\mathcal{M}_{t\bar{t}}|^2(m_{\rm top}) \end{aligned}$$

 \Rightarrow Advantages:

- Use full 4-vectors with maximal kinematic and topological information
- higher weight is assigned to events that are more likely to be from ttbar
 Drawbacks:
- High computational demand
- Theory assumptions: incorrect modeling due to missing theory corrections

First measurement of top quark mass

- s
- First measurement of top quark mass performed in the lepton plus jets channel, using a sample of 19 events with an expected background of ~ 7 at CDF and 17 events with ~ 4 backg at D0.

Reconstruct M_{top} with 2 constraints: $M(W^+)=M(W^-)$, M(t)=M(tbar)

PRL 74 2632 (1995)

Lepton + 4 jets: template method

CDF Lepton plus jets mode

- Full RunII dataset, 8.7 fb⁻¹
- Golden mode:
 - $\Rightarrow t {\rightarrow} W({\rightarrow} \ell_{\mathcal{V}}) j_{\mathsf{b}}, t {\rightarrow} W({\rightarrow} jj) j_{\mathsf{b}}$

⇒ Separate event samples into subsamples with 0,1, or 2 b tags

- ✓ Loosen cuts with added tag(s)
- Reconstruction with kinematic fit
 - \Rightarrow Constraints: M(t)=M(tbar), M(jj)=M_W, M(ℓ_V)=M_W
 - \Rightarrow b tags reduce combinatorics
 - ⇒Jet Energy scale derived from M(jj)
- 3D template fit

 \Rightarrow Use M^{reco}, M(jj) and 2nd best M^{reco}

 \Rightarrow Free parameters M_t and Δ_{JES}

Top mass workshop, Frascati, May 6 2015

CDF Lepton plus jets mode

Determined mostly from Monte Carlo

\Rightarrow data give normalization

CDF II Preliminary 8.7 fb^{-1}

	0-tag	$1\text{-}\mathrm{tagL}$	1-tagT	2-tagL	2-tagT
$Wb\overline{b}$	37.6 ± 15.9	54.4 ± 22.6	$34.0{\pm}14.3$	$8.5 {\pm} 3.6$	6.1 ± 2.6
$Wc\bar{c}$	$117.8 {\pm} 46.2$	35.7 ± 13.6	22.3 ± 9.0	$1.4{\pm}0.7$	1.2 ± 0.5
Wc	54.2 ± 25.1	$19.1 {\pm} 10.0$	10.4 ± 5.1	$0.8 {\pm} 0.3$	0.5 ± 0.2
W+light jets	$493.6 {\pm} 111.5$	60.5 ± 13.5	$35.4 {\pm} 9.0$	$0.9{\pm}0.3$	$0.6 {\pm} 0.2$
Z+jets	52.3 ± 4.4	8.9 ± 1.1	$5.9 {\pm} 0.7$	$0.8 {\pm} 0.1$	0.5 ± 0.1
single top	$4.9 {\pm} 0.5$	$10.5 {\pm} 0.9$	$6.8 {\pm} 0.6$	$2.2{\pm}0.3$	1.7 ± 0.2
Diboson	60.3 ± 5.6	11.1 ± 1.4	8.5 ± 1.1	$1.0{\pm}0.2$	0.8 ± 0.1
QCD	$143.0{\pm}114.4$	$34.5{\pm}12.6$	$20.7{\pm}16.6$	$4.4{\pm}2.5$	2.5 ± 2.4
Total	963.5 ± 229.3	234.7 ± 61.1	$144.0{\pm}40.9$	$19.9 {\pm} 5.5$	13.8 ± 4.2
$t\bar{t}$	644.8 ± 86.3	695.0 ± 86.7	867.3 ± 107.6	192.3 ± 29.7	303.7 ± 46.6
Expected Events	1608.4 ± 245.0	$929.8{\pm}106.1$	1011.3 ± 115.1	212.2 ± 30.2	$317.6{\pm}46.8$
Observed Events	1627	882	997	208	275

ttbar : Pythia

W+jets : Alpgen+Pythia W+cc, W+bb: Alpgen+Pythia Multijets events : from data

 \Rightarrow about 4000 observed events in total , ~2700 ttbar expected

CDF Lepton plus jets

- 3D template fit
 - \Rightarrow Use M^{reco}, M(jj) and 2nd best M^{reco}

CDF Lepton plus jets: syst uncertainties

Dominant systematic uncertainty are residual JES and signal modeling

CDF Lepton plus jets: results

- Unbinned maximum likelihood fit to the observable in data
- Independent likelihood used for each subsample
- M_{top} = 172.85 ± 0.71 (stat.+JES) ± 0.84 (syst) GeV/c²

Precision: 0.6%

D0 Lepton plus jets

- Full D0 data set 9.7 fb⁻¹
- Selection:
 - \Rightarrow Exactly one electron or muon with pT> 20 GeV, $|\eta e|$ < 1.1, $|\eta \mu|$ < 2.0
 - ⇒ Exactly four jets pT leading > 40 GeV, pT> 20 GeV
 - \Rightarrow One or more b-tagged jets (efficiency ~ 65%, mistag rate ~5%)
 - \Rightarrow MET > 20 GeV + topological cuts

Simulation

- ⇒ ttbar : Alpgen +Pythia modified tune A),
- \Rightarrow W+jets : Alpgen+Pythia
- \Rightarrow W+cc, W+bb: Alpgen+Pythia
- \Rightarrow Multijets events : from data

Contribution	<i>e</i> +jets			μ -	+jets	
tī	918.11	\pm	3.63	824.88	\pm	3.48
W + jets	77.85	\pm	2.13	101.03	\pm	2.93
W + HF	125.98	\pm	2.12	162.21	\pm	2.81
Multijet	144.41	\pm	24.19	48.17	\pm	16.11
Other backgrounds	97.75	\pm	0.51	79.24	\pm	0.94
Expected	1364.10	\pm	24.65	1215.53	\pm	17.00
Observed	1	502		1	286	

about 2800 observed events in total , ~1750 ttbar expected

Expected signal fraction: 61% e+jets 64% μ+jets

Top mass workshop, Frascati, May 6 2015

The correction accounts for the difference in JES for b quark jets and light quark jets:

⇒Substantial reduction of one of the dominant systematic uncertainties

- Calculate a probability per event to be signal or background as a function of the top mass
- Signal probability for a set of measured jets and lepton (x)

$$P(x; M_{top}, JES) = \frac{1}{\sigma} \int dq_1 dq_2 f(q_1) f(q_2) d\sigma(y; M_{top}) W(x, y, JES)$$

Differential cross section:
LO ME (qq->tt) only Transfer function: probability
to measure x when parton-level
y was produced (detector resp.)

- Select events with exactly 4 jets, well described by LO ME.
- Sum over 24 possible jet-parton assignments with b-tag dependent weights
- Integrate over 10 variables using MC integration
- Use W-boson mass as an additional constraint for the JES correction factor
- Multiply probabilities for all events -> likelihood simultaneously determines top quark mass and JES correction.

 $L(f_{top}, M_{top}, JES) \propto \prod_{i}^{Nevents} (f_{top} P_{top,i}(M_{top}, JES) + (1 - f_{top}) P_{bkgd,i}(JES))$

D0: calibration of the ME method

- We need to calibrate the method:
 - \Rightarrow we use P_{sig} and P_{bck} from first principles with a LO ME and parametrized detector response \rightarrow calibration is imperative
- Study this using pseudo-experiments:
 - \Rightarrow Draw ensembles of pseudo-experiments from MC
 - \Rightarrow PEs include:
 - ✓ W+jets background
 - ✓ Multijets backg.
- Step1: determine the fraction of signal f_{top} in data sample

D0: calibration of the ME method

- We need to calibrate the method:
 - \Rightarrow we use P_{sig} and P_{bck} from first principles with a LO ME and parametrized detector response \rightarrow calibration is imperative
- Study this using pseudo-experiments:
 - \Rightarrow Draw ensembles of pseudo-experiments from MC
 - \Rightarrow PEs include:
 - ✓ W+jets background✓ Multijets backg.
- Step2: determine m_{top} and JES calibration + pull width (for f_{top} from Step 1)

D0 Lepton plus jets

Comparison of SM predictions to data

D0: Systematic Uncertainties Estimate

Top mass workshop, Frascati, May 6 2015

D0: Lepton plus jets top quark mass

Systematic uncertainties comparison with previous D0 analysis

Source of uncertainty	Effect on m_t	(GeV)	Source	Uncertainty (GeV)
Signal and background modeling:			Modeling of production:	
Higher order corrections [*]	0.15		Modeling of signal:	
Initial/final state radiation [*]	0.09		Higher-order effects	± 0.25
Hadronization & UE [*]	0.26		ISR/FSR	± 0.26
Color reconnection [*]	0.10		Hadronization and UE	\$0.58
Multiple $p\bar{p}$ interactions	0.06		Color reconnection	± 0.28
Heavy flavor scale factor	0.06		Multiple $p\bar{p}$ interactions	± 0.07
b-jet modeling	0.09		Modeling of background	± 0.16
PDF uncertainty	0.11		W+jets heavy-flavor scale factor	±0.07
Detector modeling:			Modeling of b jets	± 0.09
Residual jet energy scale	0.21		Choice of PDF	± 0.24
Data-MC jet response difference	0.16		Modeling of detector:	
b-tagging	0.10		Residual jet energy scale	± 0.21
Trigger	0.01		Data-MC jet response difference	± 0.28
Lepton momentum scale	0.01	1.02 GeV	b-tagging efficiency	± 0.08
Jet energy resolution	0.07		Trigger efficiency	± 0.01
Jet ID efficiency	0.01		Lepton momentum scale	± 0.17
Method:			Jet energy resolution	±0.32
Modeling of multijet events	0.04	0.49 GeV	Jet ID efficiency	± 0.26
Signal fraction	0.08		method:	
MC calibration	0.07		Multijet contamination	± 0.14
Total systematic uncertainty	0.49		Signal fraction	±0.10
Total statistical uncertainty	0.58		MC calibration	€0.20
Total uncertainty	0.76		Total	±1.02

PRL113 032002 (2014) 9.7 fb⁻¹

PRD84 032004 (2011) 3.6 fb⁻¹

Top mass workshop, Frascati, May 6 2015

CDF dilepton top-quark mass

- Small branching ratio (5% for ee, eµ, µµ final states)
- Measurement with the full RunII dataset 9.1 fb⁻¹

CDF Run II Preliminary (8.8 fb^{-1})

→ statistics is no longer the limiting uncertainty, this analysis optimized the influence of jet energy scale

- Sample: two charged leptons, missing transverse energy and two jets
- Top-quark mass reconstruction difficult due to 2 undetectable neutrinos

$t\overline{t}$ dilepton sample,	tagged events
Source	ll
WW	0.57 ± 0.15
WZ	0.12 ± 0.03
ZZ	0.20 ± 0.06
DY+LF	2.35 ± 0.31
DY+HF	2.09 ± 0.20
Fakes	8.59 ± 2.74
Total background	13.92±2.83
$t\bar{t}~(\sigma=7.4~{ m pb})$	227.19 ± 16.17
Total SM expectation	241.11 ± 16.42
Observed	230

CDF Run II Preliminary (9.1 fb⁻¹)

$tar{t}$ dilepton sample, 0 tags					
Source	ll				
WW	16.39 ± 3.60				
WZ	5.21 ± 1.00				
ZZ	3.01 ± 0.50				
$Z/\gamma^* \to ee + \mu\mu + \tau\tau$	51.15 ± 8.00				
Fakes	21.41 ± 6.16				
Total background	97.16 ± 14.45				
$t\overline{t}~(\sigma=7.4~{ m pb})$	173.16 ± 19.70				
Total SM expectation	270.33 ± 33.34				
Observed	290				

Top mass workshop, Frascati, May 6 2015

CDF dilepton top-quark mass

- Template analysis using an hybrid variable formed by:
 - \rightarrow M_t^{reco}: reconstructed top mass (neutrino Φ weighting)
 - \Rightarrow account for unconstrained event kinematics with scan over the space of possibilities for the azimuthal angles of neutrinos
 - $\Rightarrow\,$ reconstruct top quark mass by minimizing a χ^2 function in the assumption of ttbar -> dilepton final state
 - \Rightarrow assign weights to the solutions and build a single mass for each event
 - \Rightarrow requires external JES
 - \rightarrow M_{lb}^{alt}: based only on lepton 4-momenta and jet directions:

$$M_{lb}^{\text{alt}} = c^2 \sqrt{\frac{\langle l_1, b_1 \rangle \cdot \langle l_2, b_2 \rangle}{E_{b_1} \cdot E_{b_2}}}$$

- \Rightarrow insensitive to jet energies, less sensistive to m_{top}
- \rightarrow Definition of the "hybrid variable": $M^{\text{hyb}} = w \cdot M_t^{\text{reco}} + (1-w) \cdot M_{lb}^{\text{alt}}$
- → we can choose w with requirement of minimal expected stat+JES error
 ⇒ optimization of the uncertainty obtained with w = 0.6

Top mass workshop, Frascati, May 6 2015

CDF dilepton top-quark mass

- General procedure:
- Scan interval of [0,1] for parameter w to find optimal value for our measurement
- Define expected stat. error as mean of error distribution from PE's for M_{top}=172.5GeV/c²
- Define JES systematic error by applying shifts in JES
- Choose optimal w with requirement of minimal expected stat+JES error

- Effect from including/removing events after shift in JES ⇒ non-zero JES systematics if *w* nearly 0
- If w=0.1 JES error is zero because effect of changing alternative variable after shift is compensated by effect from including/removing events

Ċ

CDF dilepton top-quark mass

CDF

CDF dilepton top-quark mass syst.

Summary of uncertainties

- Parameters used for generation are modified by ±1 standard deviation in their uncertainties and new templates are built.
- PE's from modified templates are performed
- Difference between median of top quark mass from PE's and nominal top mass is used as estimate of the systematic uncertainty.

Source	Uncertainty $({\rm GeV}/c^2)$
Jet-energy scale	2.2
NLO effects	0.7
Monte Carlo generators	0.5
Lepton-energy scale	0.4
Background modeling	0.4
Initial- and final-state radiation	0.4
gg fraction	0.3
b-jet-energy scale	0.3
Luminosity profile	0.3
Color reconnection	0.2
MC sample size	0.2
Parton distribution functions	0.2
b-tagging	0.1
Total systematic uncertainty	2.5
Statistical uncertainty	1.9
Total	3.2

CDF dilepton: template fits

We define M_{top} as maximum of likelihood function M_{top} and its positive and negative statistical uncertainties are returned by MINUIT

 $L^{tot} = L^{tagged} \cdot L^{non-tagged}$

CDF: All Hadronic

Top mass workshop, Frascati, May 6 2015

- Pick assignment with minimal χ^2
- Now we are able to reconstruct m_{top} and m_W

All Hadronic: Template Fit

Source	$\sigma_{M_{\mathrm{top}}}$	$\sigma_{\Delta_{\rm JES}}$	-
	$({\rm GeV}/c^2)$		
Generator (hadronization)	0.29	0.273	^
Parton distribution functions	$^{+0.18}_{-0.36}$	$^{+0.096}_{-0.052}$	Modeling of signal events
Initial / Final state radiation	0.13	0.232	
Color reconnection	0.32	0.101	Y
$\Delta_{\rm JES}$ fit	0.97		↑
$M_{\rm top}$ fit		0.207	Measurement method
Other free parameters of the fit	0.41	0.040	
Templates sample size	0.34	0.071	♥
$t\bar{t}$ cross section	0.15	0.034	
Integrated luminosity	0.15	0.032	
Trigger	0.61	0.188	
Background shape	0.15	0.014	
b-tagging	0.04	0.018	
<i>b</i> -jets energy scale	0.20	0.035	
Pileup	0.22	0	
Residual JES	0.57		∧
Residual bias / Calibration	$^{+0.27}_{-0.24}$	$^{+0.077}_{-0.096}$	Residual JES
Total	$^{+1.55}_{-1.58}$	$+0.492 \\ -0.488$	•

Top mass workshop, Frascati, May 6 2015

All Hadronic: Results

m_t=175.07±1.19(stat)^{+1.55}_{-1.58}(syst) GeV/c²

Precision: 1.1%

CDF Run II - All Hadronic M_{top} - Preliminary (9.3 fb⁻¹)

PRD 90, 091101(R) (2014)

Tevatron

- 5 Run I and 7 Run II results
- Combination performed using BLUE
- Update since march 2013:
 - \Rightarrow CDF analyses in dilepton and alljets
 - \Rightarrow D0 l+jets measurement using matrix elements
- Limited by systematic uncertainties
 - ⇒ Dominant: signal modeling and jet energy scale uncertainties

Total uncertainty ± 0.64 GeV/c² (< 0.4%)
 (better than world comb. March 2014: ± 0.76 GeV/c²)

Mass of the Top Quark

Sandra Leone INFN Pisa

 $M_{top} = 174.34 \pm 0.37 \text{ (stat)} \pm 0.52 \text{ (syst)} \text{ GeV/c}^2$

Conclusions

- Experimental top quark physics started 20 years ago at the Tevatron, with the observation of top
- Tevatron experiments paved the way to LHC experiments, defining tools and procedures
- Our top mass measurements are systematically limited since years
 - ⇒ Lots of work went into the understanding of the systematic uncertainties and refining the precision
 - \Rightarrow And unifying their treatment across experiments!
 - Most precise measurements with the Matrix Element method in the I+jets channel
 - ✓ Followed by the all-hadronic channel + the Template Method
 - ✓ Significant contribution from the dilepton channel
- Several results are coming in dilepton and all-hadronic channels from D0
- 20 years after the discovery of the top quark:

 \Rightarrow It's time for the LHC exp. to accomplish precision measurements in the top sector

Top mass workshop, Frascati, May 6 2015

Conclusions

Experimental top quark physics started 20 years ago at the Tevatron, with the observation of top

Thank you!

- Tevatron experime procedures
- Our measurement
 - \Rightarrow Lots of work went into the supervision of the systematics and refining the
 - For more details:
 - http://www-cdf.fnal.gov/physics/new/top/top.html
 - http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/
 - http://tevewwg.fnal.gov
 - Followed by the all-hadronic channel + the Template Method
 - ✓ Significant cor
- Several results a Thanks to all the CDF and DO
- om D0

* defining tools and

- 20 years after the collaborators and the Fermilab staff

Top mass workshop, Frascati, May 6 2015

Backup

Alternative Techniques

B-hadron Lifetime / Lepton pT

- \Rightarrow lifetime and (transverse) decay length (Lxy) of B-hadrons from the top decay depend linearly on mt
- \Rightarrow similarly, pT of the charged leptons from the W boson decay can be used
- ⇒ Lxy and lepton-pT reconstruction based on the tracking (muon) system(s) and EM calo (for e), largely reduced sensitivity to JES unc., however typically larger statistical uncertainties

48

Phys.Rev.D81 032002 (2010)

Top mass workshop, Frascati, May 6 2015

B-hadron Lifetime / Lepton pT

- L = 1.9 fb⁻¹, l+jets channel
- sensitive to:
 - \Rightarrow modelling of top-pT (PDFs)
 - ⇒ Lxy calibration (b-fragmentation, tracking modelling)
 - \checkmark dedicated Lxy calibration using bb events
- Simultaneous fit to Lxy / lepton pT :
- mt = 170.7 ± 6.3 (stat.) ± 2.6 (syst) GeV
- systematic uncertainties dominated by:
 - \Rightarrow background shape (1.7 GeV)
 - \Rightarrow lepton pT scale (1.2 GeV)
 - \Rightarrow Lxy calibration (1.1 GeV)
 - \Rightarrow calorimeter JES uncertainty: 0.3 GeV

Phys.Lett.B698:371-379,2011: mt = 176.9 ± 8.0(stat) ± 2.7(syst) GeV (lepton pT only)

Top-Quark Mass from tt x-Section

- compare experimental σ_{tt} with theory computation ^{PLB 703}, 422 (2011)
 - \Rightarrow measure m_t in well defined renormalisation scheme (m_t^{pole}, m_t^{MS})

 $\Rightarrow m_t^{MC}$ only enters via top mass dependence of measured σ_{tt} due to event selection criteria

- compare measured and predicted cross-section to find most probable m_t (likelihood maximisation)
- L = 5.3 fb⁻¹: l+ jets channel
- theory calculation at approximate NNLO
 (JHEP 0307 (2003) 001, Comput. Phys. Commun. 135 (2001) 238)
- theory uncertainties:
 - \Rightarrow renormalisation/factorisation scales (up/down variation by factor 2)
 - \Rightarrow PDF uncertainty

50

Top-Quark Mass from tt x-Section σ_{ff} (pb) DØ, L=5.3 fb⁻¹ DØ, L=5.3 fb -1 Measured $\sigma(pp \rightarrow t\bar{t}+X)$ Measured $\sigma(p\overline{p} \rightarrow t\overline{t} + X)$ Measured dependence of σ Measured dependence of σ Approximate NNLO Approximate NNLO NLO+NNLL NLO+NNLL 150 160 170 180 190 Top quark pole mass (GeV) 150 160 170 140 Top quark MS mass (GeV) PLB 703, 422 (2011) \triangleright assuming $m_t^{MC} = m_t^{\overline{MS}}$ $m_t^{pole} = 167.5_{-4.7}^{+5.2} \text{ GeV} \quad m_t^{\overline{MS}} = 160.0_{-4.2}^{+4.8} \text{ GeV}$ results in shift of $ightarrow \Delta m_t^{pole} = -2.7 \, \mathrm{GeV}$

 $\triangleright \Delta m_t^{\overline{MS}} = -2.6 \,\mathrm{GeV}$

 \rightarrow half of shift included in systematic uncertainties

PRD 80, 071102 (2009):

 $m_t^{pole} = 169.1^{+5.9}_{-5.2}$ (ℓ +jets + dilepton channel)

CDF MET +jet channel

PRD (R) 88 011101 (2013)

= Fi	ll	Run	Π	dataset	8.	.7	fb-1	
------	----	-----	---	---------	----	----	------	--

- ttbar simulation: Pythia
- Selection similar to l+jets:
 - \Rightarrow NO identified leptons, MET significance > 3 GeV^{1/2}
 - \Rightarrow 4 6 jets with pT > 15 GeV, $|\eta|$ < 2.0
 - ⇒topological cuts + NN discriminant cut
 - \Rightarrow Use b-tagging to classify events

Reconstruction procedure similar to I+jets

Source	Uncertainty (GeV/ c^2)
Residual jet-energy scale	0.44
MC generator	0.36
Color reconnection	0.28
gg fraction	0.27
Radiation	0.28
PDFs	0.16
<i>b</i> -jet energy scale	0.19
Background	0.15
Calibration	0.21
Multiple hadron interaction	0.18
Trigger modeling	0.13

 $M_{top} = 173.93 \pm 1.64 \text{ (stat+JES)} \pm 0.87 \text{ (syst)} \text{ GeV}$

Matrix of total correlation coefficients:

	Run I published			Run II published				Run II prel.				
		CDF		DØ	ð		\mathbf{CDF}		DØ	0	0	DF
	ℓ +jets	ll	all-jets	ℓ +jets	ll	ℓ+jets	L_{XY}	MEt	ℓ +jets	ll	ll	all-jets
CDF-I <i>l</i> +jets	1.00	0.29	0.32	0.26	0.11	0.49	0.07	0.26	0.19	0.12	0.54	0.27
CDF-I <i>ll</i>	0.29	1.00	0.19	0.15	0.08	0.29	0.04	0.16	0.12	0.08	0.32	0.17
CDF-I all-jets	0.32	0.19	1.00	0.14	0.07	0.30	0.04	0.16	0.08	0.06	0.37	0.18
DØ-I ℓ+jets	0.26	0.15	0.14	1.00	0.16	0.22	0.05	0.12	0.13	0.07	0.26	0.14
DØ-I ℓℓ	0.11	0.08	0.07	0.16	1.00	0.11	0.02	0.07	0.07	0.05	0.13	0.07
CDF-II ℓ +jets	0.49	0.29	0.30	0.22	0.11	1.00	0.08	0.32	0.28	0.18	0.52	0.30
$CDF-II L_{XY}$	0.07	0.04	0.04	0.05	0.02	0.08	1.00	0.04	0.05	0.03	0.06	0.04
CDF-II MEt	0.26	0.16	0.16	0.12	0.07	0.32	0.04	1.00	0.17	0.11	0.29	0.18
DØ-II ℓ+jets	0.19	0.12	0.08	0.13	0.07	0.28	0.05	0.17	1.00	0.36	0.15	0.14
DØ-II ℓℓ	0.12	0.08	0.06	0.07	0.05	0.18	0.03	0.11	0.36	1.00	0.10	0.09
CDF-II <i>ll</i>	0.54	0.32	0.37	0.26	0.13	0.52	0.06	0.29	0.15	0.10	1.00	0.32
CDF-II all-jets	0.27	0.17	0.18	0.14	0.07	0.30	0.04	0.18	0.14	0.09	0.32	1.00

 Uncertainties on combined top quark mass:

	Tevatron combined values (GeV/c^2)
$M_{ m t}$	174.34
In situ light-jet calibration (iJES)	0.31
Response to $b/q/g$ jets (aJES)	0.10
Model for b jets (bJES)	0.10
Out-of-cone correction (cJES)	0.02
Light-jet response (1) (rJES)	0.05
Light-jet response (2) (dJES)	0.13
Lepton modeling (LepPt)	0.07
Signal modeling (Signal)	0.34
Jet modeling (DetMod)	0.03
b-tag modeling (b -tag)	0.07
Background from theory (BGMC)	0.04
Background based on data (BGData)	0.08
Calibration method (Method)	0.07
Offset (UN/MI)	0.00
Multiple interactions model (MHI)	0.06
Systematic uncertainty (syst)	0.52
Statistical uncertainty (stat)	0.37
Total uncertainty	0.64