The Top Mass: Theoretical Interpretation and Uncertainties

André H. Hoang

University of Vienna

Top Mass: Challenges in Definition and Determination, May 6 - 8, 2015

Motivation

- \rightarrow Most precise mass from direct reconstruction: $m_t^{\text{MC}} = 173.34 \pm 0.76 \,\text{GeV}$
- $\rightarrow m_t^{MC}$ cannot be used as direct input into NLO/NNLO calculations since it is not a field theoretic mass.

Outline

<u>Part 1:</u> \rightarrow Theoretical thoughts on m_t^{MC}

• How m_t^{MC} is related to field theoretic masses.

See: "The Top Mass: Interpretation and Theoretical Uncertainties", arXiv:1412.3649 Same conclusions: AH, Stewart: arXive:0808.0222

<u>Part 2:</u> \rightarrow Towards a determination of m_t^{MC}

- Variable Flavor Number Scheme for final state jets.
 Full massive event shape distribution
- Status & preliminary results

Top Quark Mass

- $ightarrow ~\overline{m}(\mu)$ is pure UV-object without IR-sensitivity
- \rightarrow Useful scheme for $\mu > m$
- \rightarrow Far away from a kinematic mass of the quark

<u>Pole scheme:</u> $m^0 = m^{\text{pole}} \left[1 - \frac{\alpha_s}{\pi \epsilon} + \dots \right] - \Sigma^{\text{fin}}(m^{\text{pole}}, m^{\text{pole}}, \mu)$

- \rightarrow Absorbes all self energy corrections into the mass parameter
- \rightarrow Close to the notion of the quark rest mass (kinematic mass)
- → <u>Renormalon problem:</u> infrared-sensitive contributions from < 1 GeV that cancel between self-energy and all other diagrams cannot cancel.
- $\rightarrow \Sigma^{\text{fin}}$ has perturbative instabilities due to sensitivity to momenta < 1 GeV (Λ_{QCD})

Should not be used if uncertainties are below 1 GeV !

Heavy Quark Mass

$$= p - m^{0} - \Sigma(p, m^{0}, \mu)$$

$$+ \underbrace{\sum \sum \sum \sum m^{0}}_{\Sigma(m^{0}, m^{0}, \mu)} = m^{0} \left[\frac{\alpha_{s}}{\pi \epsilon} + \dots \right] + \underbrace{\Sigma^{\text{fin}}(m^{0}, m^{0}, \mu)}_{\Sigma(m^{0}, m^{0}, \mu)}$$

$$\underline{\text{MS scheme:}} \quad m^{0} = \overline{m}(\mu) \left[1 - \frac{\alpha_{s}}{\pi \epsilon} + \dots \right]$$

$$\underline{\text{Pole scheme:}} \quad m^{0} = m^{\text{pole}} \left[1 - \frac{\alpha_{s}}{\pi \epsilon} + \dots \right] - \Sigma^{\text{fin}}(m^{\text{pole}}, m^{\text{pole}}, \mu)$$

 $\underline{\text{MSR scheme:}} \quad m^{\text{MSR}}(R) = m^{\text{pole}} - \Sigma^{\text{fin}}(R, R, \mu) \quad \text{ for } R < m \quad \text{ Jain, AH, Scimemi, Stewart (2008)}$

- \rightarrow Like pole mass, but self-energy correction from < R are not absorbed into mass
- \rightarrow Interpolates between MSbar and pole mass scheme

 $m_t^{\text{MSR}}(R=0) = m^{\text{pole}}$ $m_t^{\text{MSR}}(R=\overline{m}(\overline{m})) = \overline{m}(\overline{m})$

- \rightarrow More stable in perturbation theory.
- $\rightarrow m_t^{MSR}(R = 1 \,\text{GeV})$ close to the notion of a kinematic mass, but without renormalon problem.

MSbar Scheme: $(\mu > \overline{m}(\overline{m}))$ $\overline{m}(\overline{m}) - m^{\text{pole}} = -\overline{m}(\overline{m}) \left[0.42441 \,\alpha_s(\overline{m}) + 0.8345 \,\alpha_s^2(\overline{m}) + 2.368 \,\alpha_s^3(\overline{m}) + \ldots \right]$ $(R < \overline{m}(\overline{m}))$ MSR Scheme: $m_{\rm MSR}(R) - m^{\rm pole} = -R \left[0.42441 \,\alpha_s(R) + 0.8345 \,\alpha_s^2(R) + 2.368 \,\alpha_s^3(R) + \ldots \right]$ $m_{\rm MSR}(m_{\rm MSR}) = \overline{m}(\overline{m})$

 $\Rightarrow m_{MSR}(R)$ Short-distance mass that smoothly interpolates all R scales

- Excellent convergence of relation between MSR masses at different R values
- Excellent convergence of relation between MSR masses and other short-distance masses
- Smoothy interpolates to the MSbar mass.

MSR Mass Definition

• Mass definition must be close with the scale of the respective functions (\rightarrow profile functions)

 $\mu \ge m$: MSbar mass (n₁+1)

$$\bar{m}(\mu) = m_{\text{pole}} - \bar{m}(\mu) \sum_{n=1}^{\infty} \sum_{k=0}^{n} a_{nk} \left(\frac{\alpha_s(\mu)}{4\pi}\right)^n \ln^k \frac{\mu}{\bar{m}}$$

 \rightarrow usual MSbar RG-evolution

μ < m: R-scale short-distance mass (n_l)

 \rightarrow power-like RG-evolution

 \rightarrow stable evolution down to the Landau pole

Jain, Scimemi, Stewart 08 Jain, Scimemi, Stewart, AH 08

MSR Mass Definition

Heavy Quark Mass in the MC

Monte-Carlo event generator:

• Hard matrix element:

Initial parton annihilation and top production plus additional hard partons from pQCD.

Parton shower evolution:

Splitting into higher-multiplicity partonic states (plus top decay) with subsequently lower virtualities until shower cut Λ_s . NO top self-energy contributions.

Splitting probabilities from pQCD (approx LL accuracy, soft-collinear limit).

Can be viewed as a way to sum dominant perturbative corrections down to Λ_s = 1 GeV.

• Hadronization model:

Turns partons into hadrons.

Tune strongly dependent on parton shower implementation.

Description of data (frequently) much better than the conceptual (LL) precision of parton evolution part.

• MC mass:

Mass of top propagator prior to top decay.

→ Interpretation of m_t^{MC} dependent on view whether <u>MC is more model</u> or or <u>more first principles QCD.</u>

We have to assume this in order to go on.

Heavy Quark Mass in the MC

Let's take the reconstructed top invariant mass distribution as a concrete example to see how the MC components enter the templates and the MC mass fitting.

Hard matrix element:

Essentially only affects the norm

• MC mass:

Determines overall location of mass range where distribution is peaked.

• Parton shower evolution + Hadronization model:

Modify shape and distribution further.

PS: perturbative part - self-energy contributions absorbed into mass above Λ_s HM: non-perturbative part below Λ_s

$$m_t^{\mathrm{MC}} = m_t^{\mathrm{MSR}}(R = 1 \,\mathrm{GeV}) + \Delta_{t,\mathrm{MC}}(R = 1 \,\mathrm{GeV})$$

 $\Delta_{t,\mathrm{MC}}(1 \,\mathrm{GeV}) \simeq \mathcal{O}(1 \,\mathrm{GeV})$

Contains perturbative and non-perturbative contributions. Conceptual reliability related to how precisely $\Delta_{t,\mathrm{MC}}$ can be determined.

Analogy: Meson masses

 $m_B = m_b^{\text{MSR}}(1 \,\text{GeV}) + \Delta_{b,B}(R = 1 \,\text{GeV})$ $\Delta_{b,B}(1 \,\text{GeV}) \simeq \mathcal{O}(1 \,\text{GeV})$

Table 1. Some B mesons masses, MSR masses $m_b^{\text{MSR}}(1 \text{ GeV})$ and $m_b^{\text{MSR}}(2 \text{ GeV})$ from $m_b^{1\text{S}} = 4780 \pm 66 \text{ MeV} [18]$, and corresponding values for $\Delta_{b,B}$. All in units of MeV, $\alpha_s(m_Z) = 0.1184$.

$m_b^{\rm MSR}(1{\rm GeV})$	$m_b^{\rm MSR}(2{\rm GeV})$	$m(B^0)$	$m(B^*)$	$m(B_{1}^{0})$	$m(B_2^*)$
4795 ± 69	4571 ± 69	5279.58 ± 0.17	5325.2 ± 0.4	5724 ± 2	5743 ± 5
$\Delta_{b,B}(1{\rm GeV})$		485 ± 69	530 ± 69	929 ± 69	948 ± 69
	$\Delta_{b,B}(2{ m GeV})$	709 ± 69	754 ± 69	1153 ± 69	1172 ± 69

Additional Comments

- Using NLO vs. LO matrix elements does not affect the interpretation of the MC mass
- Different parton evolution implies in principle a different MC mass.
- Relation of MC to MSR mass can be used to deal with mass dependent efficiencies for total cross section measurements.
- MC mass should be independent of the process and kinematic region used for fitting.

Theory Tools to Measure the MC mass

<u>Part 2</u>

The relation between MC mass and field theoretical mass can be made more precise by measuring the MC mass using a <u>completely independent</u> hadron level QCD prediction of a mass-dependent observable.

Need:

- Accurate analytic QCD predictions beyond LL/LO with full control over the quark mass dependence
- Theoretical description at the hadron level for comparison with MC at the hadron level
- Implementation of massive quarks into the SCET framework
- VFNS for final state jets (with massive quarks)*

* In collaboration with: B. Dehnadi, V. Mateu, I. Stewart

arXiv:1302.4743 (PRD 88, 034021 (2013)) arXiv:1309.6251 (PRD 89, 014035 (2013)) arXiv:1405.4860 (PRD 90 114001 (2014)) More to come ...

Theory Tools to Measure the MC mass

Observable: Thust in e+e-

$$\tau = 1 - \max_{\vec{n}} \frac{\sum_{i} |\vec{n} \cdot \vec{p_i}|}{Q}$$
$$\tau \stackrel{\tau \to 0}{\approx} \frac{M_1^2 + M_2^2}{Q^2}$$

Invariant mass distribution in the resonance region !

Description of Jets

Principle of mass measurements:

Identification of the top decay products

"
$$m_{\rm top}^2 = p_t^2 = \left(\sum_i p_i^{\mu}\right)^2$$
 "

Problem is non-trivial !

Measured object does not exist a priori, but only through the experimental prescription for the measurement. **Quantum effects !!**

The idea of a - by itself - well defined object having a well defined mass is incorrect !!

Details and uncertainties of the parton shower and the hadronization models in den MC's influence the measured top quark mass.

Double differential invariant mass distribution (NLL):

Non-perturbative effects shift the peak by $\pm 2.4 \text{ GeV}$ and broaden the distribution.

Factorization for Massless Quarks

Primary Massless Quarks

- Massless quarks
 - ✓ SCET: Full N³LL + 3-loop non-singular

Becher, Schwartz Bauer, Fleming, Lee, Sterman Fleming, Hoang, Mantry, Stewart

- Secondary massive quarks
 - SCET: Full NNLL' / N³LL
 - ✓ New degrees of freedom: mass modes
 - Continuous description using VFNS

Gritschacher, Hoang, Jemos, Pietrulewicz, Mateu (2013 + 2014) Presented by Piotr Pietrulewicz (SCET 2013/2014)

Primary Massive Quarks

Primary massive quarks

- SCET with massive quarks NNLL
- bHQET: full NNLL' / N³LL

Fleming, Hoang, Mantry, Stewart Jain, Scimemi, Stewart

- . Fully massive (primary and secondary) quarks
 - Complete and systematic description
 Presented by Andre Hoang (SCET 2014)
 Presented by Aditya Pathak (SCET 2014)
 - \rightarrow Aim of this talk (status report)

VFN Scheme for Final State Jets

- \rightarrow consider: dijet in e⁺e⁻ annihilation, n_l light quarks \oplus one massive quark
- \rightarrow obvious: (n₁+1)-evolution for $\mu \gtrsim m$ and (n₁)-evolution for $\mu \lesssim m$
- \rightarrow obvious: different EFT scenarios w.r. to mass vs. Q J S scales

 $\mu_H \sim Q$ Q $\mu_J \sim Q \sqrt{\tau}$ $n_l + 1$ m $\mu_S \sim Q \tau$ n_l $Q\Lambda_{QCD}$ τ Λ_{QCD} 0.1 0.3 0.0 0.2 0.4 05

"profile functions"

- \rightarrow Deal with collinear and soft "mass modes"
- ightarrow Additional power counting parameter $\lambda_m = m/Q$

mode	${\pmb ho}^\mu = (+,-,\perp)$	<i>p</i> ²
<i>n</i> -coll MM	$Q(\lambda_m^2, 1, \lambda_m)$	m^2
soft MM	$Q(\lambda_m, \lambda_m, \lambda_m)$	m^2

Aims:

- Full mass dependence (little room for any strong hierarchies): decoupling, massless limit
- Smooth connections between different EFTs
- Determination of flavor matching for current-, jet- and soft-evolution
- Reconcile problem of SCET₂-type rapidity divergences

Gritschacher, AH, Jemos, Pietrulewicz

VFN Scheme: Primary Massive Quarks

Scenario IV (SCET)

$$\left|\frac{1}{\sigma_0}\frac{\mathrm{d}\hat{\sigma}(\tau)}{\mathrm{d}\tau}\right|^{\mathrm{SCET-IV}} = Q H_Q^{(n_f)}(Q,\mu_Q) U_{H_Q}^{(n_f)}(Q,\mu_Q,\mu_J) \int \mathrm{d}s \int \mathrm{d}k \, J^{(n_f)}(s,\mu_J,\overline{m}^{(n_f)}(\mu_J)) \qquad n_f = n_l + 1$$
$$U_S^{(n_f)}(k,\mu_J,\mu_S) \, S_{\mathrm{part}}^{(n_f)}(Q\tau - Q\tau_{\mathrm{min}} - \frac{s}{Q} - k,\mu_S) \qquad + (\mathsf{QCD}) \, \mathsf{Non-Singular}$$

 $_{\prime}$ (QCD) No-singular \rightarrow Non-singular + Sub-leading singular contributions

Scenario III (SCET)

> Soft mass-mode matching: integrating in the mass-mode (secondary) effects in the evolution of the soft function (top-down resummation). $O(\alpha_s^2)$

Rapidity Logarithms

- Secondary mass effects start at O(α_s²)
- Counting for rapidity logs: α_s Log ~ 1
- At $O(\alpha_s^2)$: No resummation to all orders needed
 - Need terms at $O(\alpha_s^3 \text{ Log})$ and $O(\alpha_s^4 \text{ Log}^2)$

$$L_M = \ln\left(\frac{m^2}{\mu_m^2}\right)$$

b(oosted)HQET

> Matching coefficient of SCET and bHQET have a large log from secondary corrections.

Profile Functions

Profile functions should sum up large logarithms and achieve smooth transition between the peak, tail and far-tail.

universität wien

Profile Functions

Profile functions should sum up large logarithms and achieve smooth transition between the peak, tail and far-tail.

Thrust Components: Bottom and Top

NNLL (singular) + NLO (non-singular) + power correction and renormalon subtraction

Thrust for Bottom Production

NNLL/NLL (singular) + NLO (non-singular) + power correction and renormalon subtraction

universität wien

Thrust for Top Production

NNLL/NLL (singular) + NLO (non-singular) + power correction and renormalon subtraction

Top Mass: Challenges in Definition and Determination, May 6 - 8, 2015

Thrust for Top Production

NNLL (singular) + NLO (non-singular) + power correction and renormalon subtraction

Sensitivities: Bottom and Top Production

NNLL (singular) + NLO (non-singular) + power correction and renormalon subtraction

Theory Errors: Bottom and Top Mass

NNLL (singular) + NLO (non-singular) + power correction and renormalon subtraction

Top Mass: Challenges in Definition and Determination, May 6 - 8, 2015

Theory vs. Pythia

NNLL (singular) + NLO (non-singular) + power correction and renormalon subtraction

Top Mass: Challenges in Definition and Determination, May 6 - 8, 2015

Conclusions

Conclusions

- Complete description of the entire thrust distribution for boosted heavy quarks achieved with the formalism of VFNS for final-state jets and a sequence of effective field theory setups.
- > The peak position in thrust is very sensitive (particularly at low energies) to the mass.
- Estimating theory errors is challenging
 - Under control directly at peak and tail.
 - Below peak still under investigation.
- > Our theory uncertainty for the mass extraction is reasonable and encouraging
 - ✓ Bottom → less than 0.5 GeV
 - ✓ Top → almost 0.5 GeV
- > Simultaneous fit for α_s and Ω_1 is difficult, particularly for top \rightarrow could be fixed externally
- Agreement between theory and Pythia:
 - Good for bottom
 - ✓ Some effects are likely missing for top (shoulder region) \rightarrow off shell top + electroweak effects

Outlook

- Improving the precision to N³LL seems mandatory.
- Off-shell top production + electroweak effects.

Backup Slides

Masses Loop-Theorists Like to use

Top Mass: Challenges in Definition and Determination, May 6 - 8, 2015

Series with a Renormalon

- \rightarrow Behavior depends on the typical scale R of the observable ?
- \rightarrow Series for large R converge longer, but size of corrections at lower orders are large
- ightarrow Formal ambiguity always the same: $\,\Lambda_{
 m QCD}pprox 0.5~{
 m GeV}$

Description of Jets

Principle of mass measurements:

Identification of the top decay products

"
$$m_{\rm top}^2 = p_t^2 = \left(\sum_i p_i^{\mu}\right)^2$$
 "

Problem is non-trivial !

Measured object does not exist a priori, but only through the experimental prescription for the measurement. **Quantum effects !!**

The idea of a - by itself - well defined object having a well defined mass is incorrect !!

Details and uncertainties of the parton shower and the hadronization models in den MC's influence the measured top quark mass.

Double differential invariant mass distribution:

Non-perturbative effects shift the peak by $\pm 2.4 \text{ GeV}$ and broaden the distribution.

bHQET jet function:

$$B_{+}(2v_{+}\cdot k) = \frac{-1}{8\pi N_{c}m} \operatorname{Disc} \int d^{4}x \, e^{ik\cdot x} \left\langle 0 | \operatorname{T}\{\bar{h}_{v_{+}}(0)W_{n}(0)W_{n}^{\dagger}(x)h_{v_{+}}(x)\} | 0 \right\rangle$$

- perturbative, any mass scheme
- depends on m_t, Γ_t
- Breit-Wigner at tree level

$$B_{\pm}(\hat{s}, \Gamma_t) = \frac{1}{\pi m_t} \frac{\Gamma_t}{\hat{s}^2 + \Gamma_t^2} \qquad \qquad \hat{s} = \frac{M^2 - r}{m_t}$$

$$= \frac{M^2 - m_t^2}{m_t}$$

- Describes soft cross talk of the top (and its decay b quark) with the anti-top (and its decay anti-b quark) in the top rest frame
- Soft function describes soft radiation in the <u>lab frame</u>

Issues sorted out for the first time.

Results still true for LHC (but additional issues to resolved there)

Reconstructed Top Jets (ILC)

 \rightarrow Jet function has an $\mathcal{O}(\Lambda_{\rm QCD})$ renormalon in the pole mass scheme

$$\mathcal{B}_{\pm}(\hat{s},0,\mu,\delta m) = -\frac{1}{\pi m} \frac{1}{\hat{s}+i0} \left\{ 1 + \frac{\alpha_s C_F}{4\pi} \left[4\ln^2\left(\frac{\mu}{-\hat{s}-i0}\right) + 4\ln\left(\frac{\mu}{-\hat{s}-i0}\right) + 4 + \frac{5\pi^2}{6} \right] \right\} - \frac{1}{\pi m} \frac{2\delta m}{(\hat{s}+i0)^2}$$

Why is the pole mass not visible?

$Q \gg m_t \gg \Gamma_t > \Lambda_{\rm QCD}$ Phys.Rev.D77:074010,2008 Phys.Rev.D77:114003,2008 Phys.Lett.B660:483-493,2008 QCD soft particles n-collinear n-collinear Soft-Collinear-SOFT **Effective-Theory** thrust JEI . 51 axis Heavy-Quark-**Unstable-Particle-**SOFT + **Effective-Theory Effective-Theory** hemisphere-a hemisphere-b

Faktorization Formula

$$\begin{pmatrix} \frac{d^2\sigma}{dM_t^2 dM_t^2} \end{pmatrix}_{\text{hemi}} = \sigma_0 H_Q(Q,\mu_m) H_m\left(m,\frac{Q}{m},\mu_m,\mu\right) \qquad \hat{s} = \frac{M_t^2 - m_J^2}{m_J} \\ \times \int_{-\infty}^{\infty} d\ell^+ d\ell^- B_+\left(\hat{s}_t - \frac{Q\ell^+}{m},\Gamma,\mu\right) B_-\left(\hat{s}_{\bar{t}} - \frac{Q\ell^-}{m},\Gamma,\mu\right) S_{\text{hemi}}(\ell^+,\ell^-,\mu)$$

$$JET \qquad JET \qquad JET \qquad SOFT$$

Fleming, Mantry, Stewart, AHH

$$\begin{pmatrix} \frac{d^2\sigma}{dM_t^2 dM_{\bar{t}}^2} \end{pmatrix}_{\text{hemi}} = \sigma_0 H_Q(Q, \mu_m) H_m\left(m, \frac{Q}{m}, \mu_m, \mu\right) \\ \times \int_{-\infty}^{\infty} d\ell^+ d\ell^- B_+\left(\hat{s}_t - \frac{Q\ell^+}{m}, \Gamma, \mu\right) B_-\left(\hat{s}_{\bar{t}} - \frac{Q\ell^-}{m}, \Gamma, \mu\right) S_{\text{hemi}}(\ell^+, \ell^-, \mu)$$

Jet functions:
$$B_+(\hat{s},\Gamma_t,\mu) = \operatorname{Im}\left[\frac{-i}{12\pi m_J}\int d^4x \, e^{ir.x} \langle 0| \, T\left\{\bar{h}_{v_+}(0)W_n(0)\,W_n^{\dagger}(x)h_{v_+}(x)\right\}|0\rangle\right]$$

• perturbative • dependent on <u>mass, width,</u> <u>color charge</u> $B_{\pm}^{\text{Born}}(\hat{s},\Gamma_t) = \frac{1}{\pi m_t} \frac{\Gamma_t}{\hat{s}^2 + \Gamma_t^2} \qquad \hat{s} = \frac{M^2 - m_t^2}{m_t}$

Soft function: $S_{\text{hemi}}(\ell^+, \ell^-, \mu) = \frac{1}{N_c} \sum_{X_s} \delta(\ell^+ - k_s^{+a}) \delta(\ell^- - k_s^{-b}) \langle 0 | \overline{Y}_{\bar{n}} Y_n(0) | X_s \rangle \langle X_s | Y_n^{\dagger} \overline{Y}_{\bar{n}}^{\dagger}(0) | 0 \rangle$

- non-perturbative
- analogous to the pdf's
- dependent on <u>color charge</u>, <u>kinematics</u>

Independent of the mass !

MC Mass

 Concept of mass in the MC depends on the structure and reliability of the perturbative part and the interplay of perturbative and nonperturbative part in the MC.

- Assume that the MC is a good QCD box (LO of s.th. more precise): How can one pin down the relation between m_t^{Pythia} and the Lagrangian mass ?
- Is the MC really a good QCD box ? Is the MC more a model or more QCD ?

Answer for m_t^{Pythia} might be process- and observabledependent if the MC is not a good QCD box !

