

Topical Workshop

"Top mass: challenges in definition and determination"

What is m_t ?

Adrian Signer

Paul Scherrer Institut / Universität Zürich

6. MAY 2015; FRASCATI

outline

introduction

- the obvious
- motivation
- sketch of a clean top mass determination
- linear collider threshold scan

mass definitions

- pole mass
- infrared ambiguity
- short distance mass and threshold mass

mass determinations

- ullet m_t from cross-section like observables
- ullet m_t from invariant mass of decay products

toy analysis

- ullet $tar{t}$ at NLO
- scheme dependence

summary/conclusion

introduction/obvious

- the top is unstable, no top has ever be seen, only its decay products
- it is usually said that m_t is a fundamental parameter of the SM, but there are infinitely many (different) m_t
- lacktriangle the parameter in the Lagrangian is the bare mass $\mathcal{L}
 i m_0$
- stating a numerical value for m_t without giving a precise definition of what is meant by it is meaningless
- could have $m_t \simeq 165$ GeV ($\overline{\rm MS}$ -scheme) or $m_t = 173$ GeV (pole scheme) or anything (in between)
- at LO $m_t^{\text{any scheme}} = m_0$, beyond LO need to fix a renormalization scheme (usually also includes choice of one or more scales)
- same for other fundamental parameters: by e.g. $\alpha_s=0.118$ we mean α_s in the $\overline{\rm MS}$ -scheme at the scale $\mu=M_Z$ is 0.118 (or whatever)
- lacktriangle there is no 'best' renormalization scheme, hence no 'best' definition of m_t
- in principle !?!, there is a perturbatively computable relation between m_t in two different schemes

introduction/motivation

- if you don't think a precise determination of the top mass is important, there is still time to leave the room
- 2014 'world average' (Atlas, CDF, CMS, D0) [1403.4427]

$$m_t = 173.34 \pm 0.27 \text{ (stat)} \pm 0.71 \text{ (sys) GeV}$$

- 'all' exp results going into the result above have been obtained 'in the same way' (from invariant mass of decay products)
- other determinations (e.g. from m_t dependence of cross section) lead to considerably larger error
- there are 1001 issues that need to be discussed and understood for the above result (colour reconnection, hadronization, parton showers . . .)
- I have nothing to say or add to 999 of them
- this leaves me with the infrared ambiguity of pole mass and scheme dependence of top mass extractions

introduction/motivation

• this value for m_t is/will be taken as input for many other observables

Degrassi et al. [1205.6497]

[Heinemeyer et al. 2013]

- we have to understand how this quantity m_t is related to a well defined (renormalized) mass parameter
- the issue is not (and never was!!) whether this is the pole mass or the $\overline{\mathrm{MS}}$ mass
- many (all) issues discussed here are irrelevant if $\delta m_t \sim 2~{
 m GeV}$ but are definitely relevant if $\delta m_t \sim 0.5~{
 m GeV}$
- many (all) issues discussed here have been discussed before in the context of determinations of m_b (even m_c) and m_t from a linear collider threshold scan

introduction/motivation

a clean way to determine m_t (or any other fundamental parameter)

- choose a 'good' observable (total cross section near threshold)
 - very sensitive to m_t
 - easy to measure
 - can get reliable and precise theoretical prediction
- lacktriangle choose a 'good' renormalization scheme ${
 m RS}_1$
 - mass parameter is well defined (to the required accuracy)
 - perturbative expansion is under control
- compare theory vs experiment o extract $m_{
 m RS_1}$ and $\delta m_{
 m RS_1}$ and do not stop there
- repeat this procedure for another (good) renormalization scheme RS_2 \to extract m_{RS_2} and δm_{RS_2}
- lacktriangle check consistency: relate (perturbatively) $m_{
 m RS_2}$ to $m_{
 m RS_1}$

$$m_{\rm RS_1} = m_{\rm RS_2}^{(0)} + \sum_{i=1}^{n} \alpha^i \, c^{(i)}(m_{\rm RS_2}) + {\rm higher \ order}$$

add scheme dependence as 'systematic theory error'

a 'theory' plot

a 'real' plot ISR and beamstrahlung

- calculation done at NNLO and NNLL (and very soon NNNLO)
 [Beneke et al; Pineda et al; Hoang et al; . . .]
- peak (in theory plot) is remnant of 'want-to-be' (1S) bound states
- different mass schemes in use: PS mass, RS mass, 1S mass but not the pole mass
- lacktriangle cannot compute directly in $\overline{
 m MS}$ scheme, but can convert to $\overline{
 m MS}$ mass after extraction

mass definitions

- consider top quark propagator $\frac{1}{p\!\!/-m_0}\stackrel{\mathrm{h.o.}}{\to} \frac{1}{p\!\!/-m_0-\Sigma}$
- full self energy involves all scales, also $k \lesssim \Lambda_{\sf QCD}$

$$\Sigma = \Sigma_{\rm div} + \Sigma_{\rm fin} = \int_0^\infty d^D k \dots$$

pole mass defined as (real part) of position of pole of propagator

$$(m_0 + \Sigma_{\rm div} + \Sigma_{\rm fin}) \Rightarrow m_{\rm pole}$$

- many nice properties (e.g. no infrared singularity) and 'physical' mass for leptons
- the pole mass has an intrinsic uncertainty of order $\Lambda_{\rm QCD}$ (since $\Sigma_{\rm fin}$ (all scales))

consider (fictitious) meson:

$$M = 2 m_{\text{pole}} + V_{\text{Coul}}(q^2)$$
 well def. pole mass pert. ambiguity pert. ambiguity

- pole mass is a threshold mass but NOT a short-distance mass
- lacktriangle masses of bottom and charm mass are never given in the pole scheme $\delta m < \Lambda_{
 m QCD}$

pole mass

 $\overline{
m MS}$ mass does not have the problem of infrared sensitivity (only pure UV is absorbed into mass definition)

$$(m_0 + \Sigma_{\rm div}) \Rightarrow m_{\overline{\rm MS}} \quad \rightarrow \quad {\rm short \ distance \ mass}$$

- but the pole of the propagator is far away from $m_{\overline{
 m MS}}$ ightarrow NOT a threshold mass
- this is not a problem as such, but
- for physical process at threshold cannot use $\overline{\rm MS}$ mass, but have to use threshold mass (differs by at most $\alpha_s^2 m_t$ from $m_{\rm pole}$) ($m_{\overline{\rm MS}} \sim 165~{
 m GeV}$, $m_{
 m pole} \sim 173~{
 m GeV}$)
- then relate threshold mass to $m_{\overline{
 m MS}}$; 4-loop exact [Marquard et al.]

short-distance threshold mass

we can have the cake and eat it

- many options for short distance threshold mass definitions:
 - potential subtracted mass (PS mass) [Beneke]

$$m_{\rm PS}(\mu_{\rm PS}) \equiv m_{\rm pole} + \frac{1}{2} \int \frac{d^3 \vec{q}}{(2\pi)^3} V_{\rm Coul}(q) \text{ with } \mu_{\rm PS} \sim m \alpha_s$$

$$m_{\text{pole}} = m_{\text{PS}}(\mu_{\text{PS}}) + \mu_{\text{PS}} \left[\frac{\alpha_s}{2\pi} \delta_1 + \frac{\alpha_s^2}{(2\pi)^2} \delta_2 + \ldots \right]$$

renormalon subtracted mass (RS mass) [Pineda]
 identify source and subtract

- 1S mass [Hoang] $m_{1S} = M_{1S}/2$
- its not clear whether we have to use short distance masses in the case of top (recall $\delta m_t \sim 0.7~{
 m GeV}$) but we certainly are allowed to do so!
- whether we have to use a threshold mass or not depends on the observable: e.g. $t\bar{t}$ cross section near threshold (linear collider) or invariant mass of (reconstructed) top, but NOT e.g. total cross section $t\bar{t}$ at hadron collider

hadron collider cross section

find observable with large m_t sensitivity and compute beyond LO

example 1:

determination of $m_{
m pole}$ and/or $m_{
m \overline{MS}}$ through total cross section [Dowling, Moch, 1305.6422]

claim: $\delta m_t \sim 2.5~{\rm GeV}$

hadron collider cross section

example 2: [Biswas, Melnikov, Schulze, 1006.0910]

 $m_{
m pole}$ through $\langle E_\ell + E_{\ell'} \rangle$ compare $\delta_{
m th} m$ (PDF, higher order) with m_t sensitivity claimed $\delta_{
m th} m$: 1.7 (LO) ightarrow 1 GeV (NLO)

example 3: [Alioli et al. 1303.6415]

$$\mathcal{R}(m_{\text{pole}}, \rho) = \frac{1}{\sigma_{t\bar{t}j}} \frac{d\sigma_{t\bar{t}j}}{d\rho} (m_{\text{pole}}, \rho)$$

could (should?) use other mass schemes as well

claimed $\delta m_{\rm pole} \sim 1~{\rm GeV}$

hadron collider kinematics

m_t from invariant mass of decay products

- many effects!! some non-perturbative
- here only 2 out of 1001...: consider partonic calculation of invariant mass of reconstructed top i.e. $M_t \equiv M(J_b,W) \equiv \sqrt{(p_{J_b}+p_W)^2}$
- better do this beyond LO !! (→ need to consider off-shell top quarks [Bevilacqua et al;
 Denner et al; Heinrich et al.]) and in more than one mass scheme !! [Falgari et al.]

off-shell effects

via effective theory approach [Falgari et al. 1303.5299] integrate out hard modes → effective Lagrangian

$$\mathcal{L} = \phi^{\dagger} B \phi + c_{p} \phi(\Pi \psi_{i}) + c_{d} \phi(\Pi \chi_{i}) + c_{b} (\Pi \psi_{i} \chi_{i}) + \bar{\psi} D_{s} \psi + \dots$$

- matching coefficients c_i contain effects of hard modes
- matching done on shell, $p_X^2 = \bar{s} = m_X^2 + \mathcal{O}(\delta)$, with \bar{s} the complex position of pole
- soft (and collinear . . .) d.o.f. still dynamical
- can be combined with further resummations (e.g. non-relativistic → ET has more complicated structure)

comparison EFT approach vs complex mass scheme calculation for single top \Rightarrow good agreement [Papanastasiou et al. 1305.7088]

invariant mass

relative transverse b-jet momentum

$t\bar{t}$ at NLO with short-distance (threshold) mass [Falgari et al. 1303.5299]

- toy analysis with some jet definition ($k_{\perp}, R = 0.7$) and some cuts on final state particles/jets (decay of W in NWA)
- lacktriangle consider mass scheme different from pole mass $m_{
 m pole}$
 - check scheme dependence
 - avoid infrared sensitivity of pole mass
- example used here: potential subtracted mass $m_{\rm PS}$ [Beneke]

$$m_{\rm PS}(\mu_{\rm PS}) = m_{\rm pole} + \frac{1}{2} \int_{q < \mu_{\rm PS}} \frac{d^3 \vec{q}}{(2\pi)^3} V_{\rm coul}(q)$$
 with $\mu_{\rm PS} \sim m \alpha_s \sim \delta^{1/2}$

- note $m_{\rm PS}(\mu_{\rm PS}=0)=m_{\rm pole}$ and $\mu_{\rm PS}\lesssim 20~{
 m GeV}$ to have threshold mass
- lacktriangle express everything in terms of $m_{
 m PS}$

$$m_{\text{pole}} = m_{\text{PS}}(\mu_{\text{PS}}) + \mu_{\text{PS}} \left[\frac{\alpha_s}{2\pi} \delta_1 + \frac{\alpha_s^2}{(2\pi)^2} \delta_2 + \ldots \right]$$

• (inverse of) propagator (counting $\delta \sim \alpha_{\rm ew} \sim \alpha_s^2$):

$$\underbrace{p^2 - m_{\mathrm{PS}}^2 + i m_{\mathrm{PS}} \Gamma}_{\sim \delta} - \underbrace{\frac{\alpha_s}{\pi} \, \delta_1 \mu_{\mathrm{PS}} \, m_{\mathrm{PS}}}_{\sim \delta} - \underbrace{\frac{\alpha_s^2}{2\pi^2} \, \delta_2 \mu_{\mathrm{PS}} \, m_{\mathrm{PS}}}_{\sim \delta} + \dots$$

scheme dependence

results in PS scheme $\mu_{PS} \in \{0, 10, 20 ??, 30 ??, 50 ???\}$ GeV

example of non-sensitive observable (pseudo-rapidity of 'top') (here Tevatron, $q\bar{q}$ only)

scheme dependence

results in PS scheme $\mu_{PS} \in \{0, 10, 20 \cdots, 30 \cdots, 50 \$

toy analysis at LO

extract m_t at LO

• assume distribution for $m_{
m pole} = m_{
m PS}(0) = 173.3~{
m GeV}$ is 'true' distribution

- adjust $m_{\mathrm{PS}}(10)$ and $m_{\mathrm{PS}}(20)$ to fit this 'true' distribution
- result at LO: $m_{PS}(10) = 172.8 \text{ GeV}$ and $m_{PS}(20) = 172.4 \text{ GeV}$

toy analysis at NLO

extract m_t at NLO assume again 'true' distribution is the one with $m_{
m pole}=173.3~{
m GeV}$

LO NLO LHC 8

 $\mu_{PS}=0$

extract mass at NLO:

$$m_{\rm PS}(10) = 172.6~{
m GeV}$$
 and $m_{\rm PS}(20) = 172.1~{
m GeV}$

- perturbative behaviour very good for $\mu_{PS}=10~{
 m GeV}$ and resonable for $\mu_{PS}=20~{
 m GeV}$
- $\mu_{\mathrm{PS}} \gtrsim 30~\mathrm{GeV}
 ightarrow$ 'bad' scheme

scheme dependence

consider scheme dependence of mass extraction or what is the best value for $m_{\overline{\rm MS}}$

		LO			NLO	
$\mu_{ ext{PS}}$	$m_{ m exp}$	$m_{\overline{ m MS}}$	$m_{ m pole}$	m_{exp}	$m_{\overline{ m MS}}$	$m_{ m pole}$
0	173.3	162.6	173.3	173.3	162.6	173.3
10	172.8	162.6 163.1	173.9	172.6	162.9	173.7
20	172.4	163.3	174.2	172.1	163.0	173.9

- conversion at NNNLO (+ Pade approximation)
- scheme ambiguity $\sim 500-900~{
 m MeV}$ at LO
- scheme ambiguity $\sim 300-600~{
 m MeV}$ at NLO
- MS scheme somewhat more stable

conclusion/summary

- lacktriangle issue 1: infrared sensitivity of $m_{
 m pole}$ scale $\mathcal{O}(\Lambda_{
 m QCD})$
 - principal limitation on precision for $\delta m_{
 m pole}$
 - does not yet seem to be a show stopper for $\delta m_{
 m pole} \sim 0.7~{
 m GeV}$
 - lacktriangle will get ever more important for decreasing $\delta m_{
 m pole}$
- issue 2: scheme dependence of m_t scale $\mathcal{O}(\Gamma_t)$
 - needs theory input at least at NLO
 - can use 'cross section' like observables (NLO standard, soon NNLO)
 - for m_t from invariant mass of decay products, need NLO in this quantity !!
 - e.g. PS scheme seems to be perfectly acceptable for $\mu_{\rm PS} \lesssim 20~{
 m GeV}$
 - there is a sizeable scheme dependence $\delta m_t = (0.5 \dots 1)$ GeV of extracted top mass in parton-level toy analysis!!
 - not clear (at least to me) to what extent such effects are modelled / included / washed out in parton showers
 - but setting $m_{\rm MC}=m_{\rm pole}$ is just plain wrong, $m_{\rm MC}\simeq m_{\rm pole}$ is fine but at some point (aleady?) not sufficient any longer