Top mass measurements at CMS and (world) averages

Roberto Chierici CNRS (IPN Lyon)

On behalf of CMS, the TOPLHCWG and the TeVEWWG

Frascati – 6-8 May 2015

Contents

Highlight the current CMS top mass measurements(*)
1. short recap of direct measurements
2. emphasis on indirect/alternative measurements

Discuss how we are constraining systematics with tt data

Give the global picture of top mass combinations

In-talk discussion is welcome

DISCLAIMER: I will not cover several of the experimental aspects similar to ATLAS or Tevatron (reconstruction techniques, methodologies, assessment of experimental uncertainties...), to leave more time to results [see Sandra's and Marina's talks]

(*) More details here

• <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP</u>

Introductory considerations on m_t measurements

- We are in the domain of systematic uncertainties since a long time now
 - Continuing with standard techniques for determining the top mass will bring progressively less information to our knowledge
- We truly are/will be in a condition of high statistics for top (pair and single) production. This unique opportunity should be exploited in a threefold way:
 - 1) use data to constrain systematic effects whenever possible, with particular emphasis to systematics of theory/modelling origin
 - 2) put in place alternative analyses, not necessarily relying on a direct reconstruction technique. Invent new techniques which can be conceptually uncorrelated to improve the combined errors
 - 3) make measurements in portions of phase space where the influence of systematics is known to be smaller (AKA "we can afford throwing some of our statistics away")
- We should keep collaborating among experiments and theory to get the best out of our data

(QUICK RECAP OF) TOP MASS MEASUREMENTS VIA DIRECT RECONSTRUCTION IN CMS

Direct reconstruction in the fully hadronic channel

- At least four central leading jets with p_T>60, at least two more with p_T>30
 ➢ Two b-tags required
- QCD background determined from data
 Event mixing in control regions
- Only consider the 6 leading jets in the event: check all combinations 4lights+2heavy jets to form two tops, keep the ones with a χ² above a cut from a constrained kinematic fit imposing the W masses and the equality of the top masses

 Ideogram: bi-dimensional maximum likelihood fit to the mass and a jet energy scale factor value for light jets

 $\mathcal{L}(\text{sample}|m_{t}, \text{JSF}) = \prod_{\text{events}} \left(f_{\text{sig}} \sum_{j} f_{j} P_{j}(m_{t}^{\text{fit}}|m_{t}, \text{JES}) P_{j}(m_{W}^{\text{reco}}|m_{t}, \text{JES}) + (1 - f_{\text{sig}}) P_{\text{bkg}}(m_{t}^{\text{fit}}) P_{\text{bkg}}(m_{W}^{\text{reco}}) \right)$ Templates

Signal fraction

The fully hadronic channel

止 1.018

رم 1.016

1.014

CMS Preliminary, 18.2 fb⁻¹, $\sqrt{s} = 8 \text{ TeV}$

-2∆ log(L) = 1 -2∆ log(L) = 4

- Large improvement from the JES constraining via a 2D template fit
 - The method is calibrated via MCs

Direct reconstruction in the semileptonic channel

- One isolated lepton and at least four central leading jets with p_T>30, of which two are btagged
- Analysis strategy similar to the hadronic channel
- Only consider the 4 leading jets in the event: check the two possible combinations of 2lights+2heavy jets to form two tops. Keep the combinations giving the best χ² after a constrained kinematic fit imposing the W masses and the equality of the two top masses
- The fitting (and calibration) procedure is there analogous to the fully hadronic channel
 - Light JES constrained in situ

The semi-leptonic channel

Direct reconstruction in the fully leptonic channel

8 600

- Two isolated, opposite charge leptons in the event
- At least two jets with $p_T>30$, one b-tag. Top candidates from the two mostly b-۲ tagged jet in the event 19.7 fb⁻¹ (8 TeV) CMS Preliminary
- Weigh analytical solutions function of m_t for the vs
- Small background under control with data

	19.7 fb	o ⁻¹ (8 TeV) + 5.1 fb ⁻¹ (7 TeV)
CMS Preliminary			
CMS 2010, dilepton JHEP 07 (2011) 049, 36 pb ⁻¹		175.5 ± 4.6 ± 4.6 GeV (value ± stat ± syst)	
CMS 2010, lepton+jets PAS TOP-10-009, 36 pb ⁻¹		173.1 ± 2.1 ± 2.6 GeV (value ± stat ± syst)	
CMS 2011, dilepton EPJC 72 (2012) 2202, 5.0 fb ⁻¹		172.5 \pm 0.4 \pm 1.4 GeV (value \pm stat \pm syst)	
CMS 2011, lepton+jets JHEP 12 (2012) 105, 5.0 fb ⁻¹		173.5 ± 0.4 ± 1.0 GeV (value ± stat ± syst)	
CMS 2011, all-hadronic EPJ C74 (2014) 2758, 3.5 fb ⁻¹		173.5 \pm 0.7 \pm 1.2 GeV (value \pm stat \pm syst)	
CMS 2012, lepton+jets PAS TOP-14-001, 19.7 fb ⁻¹		172.0 \pm 0.1 \pm 0.7 GeV (value \pm stat \pm syst)	
CMS 2012, all-hadronic PAS TOP-14-002, 18.2 fb ⁻¹		172.1 \pm 0.3 \pm 0.8 GeV (value \pm stat \pm syst)	
CMS 2012, dilepton PAS TOP-14-010, 19.7 fb ⁻¹		172.5 \pm 0.2 \pm 1.4 GeV (value \pm stat \pm syst)	
CMS combination September 2014		172.38 ± 0.10 ± 0.65 GeV (value ± stat ± syst)	
Tevatron combination July 2014 arXiv:1407.2682	⊨●	174.34 \pm 0.37 \pm 0.52 GeV (value \pm stat \pm syst)	
World combination March 2014 ATLAS, CDF, CMS, D0		173.34 ± 0.27 ± 0.71 GeV (value ± stat ± syst)	
165 170	175	5 180	
CMS Preliminary	5.11D (7 TeV)	m, [GeV	1
CMS 2010, dilepton	-0.1%	(-	-
CMS 2010, lepton+jets	0.3%		
CMS 2011, dilepton	2.9%		
CMS 2011, lepton+jets	14.6%		
CMS 2011, all-hadronic	4.7%		
CMS 2012, lepton+jets	46.5%		
CMS 2012, all-hadronic	23.0%		
CMS 2012, dilepton	8.0%		
CMS combination, September 2014			
-100 0 BLUE Combination Coeff	100 ficient [%]	$m_{\rm t} = 172.38$	± 0.

CMS combination

CMS PAS TOP-14-015

Make sure to combine only consistent measurements

Only direct reconstruction techniques used

$\begin{array}{ c c c c c c } \hline \rho_{\text{year}} & \rho_{\text{chan}} & \text{uncertainty} \\ \hline \\ $		Correlations		Combined	
Experimental uncertainties n -situ JSF factor 0 0 0.10 Inter-calibration JES component 1 1 1 0.01 MPF in-situ JES component 0 1 0.14 Other JES uncertainties 0 0 0.00 Lepton energy scale 1 1 0.02 E_{T}^{miss} scale 1 1 0.02 $Jet energy$ resolution 1 1 0.03 Trigger 0 0 0.04 MHI(Pileup) 0 1 0.20 Background Data 0 0 0.05 Background MC 1 1 0.07 Fit calibration 0 0 0.05 Modeling of hadronization 1 1 0.36 <i>b</i> fragmentation and B branching fractions 1 1 0.17 Flavor-dependent hadronization uncertainty 1 1 0.16 <i>b</i> fragmentation and B cattering process and radiation 1 0.17 Parton distribution functions		$ ho_{ m year}$	$ ho_{chan}$	uncertainty	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Experimental uncertainties				
$\begin{array}{ c c c c c c } \mbox{Inter-calibration JES component} & 1 & 1 & 0.01 \\ \mbox{MPF $in-situ$ JES component} & 0 & 1 & 0.14 \\ \mbox{Other JES uncertainties} & 0 & 0 & 0 & 0.00 \\ \mbox{Lepton energy scale} & 1 & 1 & 0.02 \\ \mbox{E_T^{miss} scale$ & 1 & 1 & 0.06 \\ \mbox{Jet energy resolution} & 1 & 1 & 0.17 \\ \mbox{b-tagging$ & 1 & 1 & 0.03 \\ \mbox{Trigger} & 0 & 0 & 0.00 \\ \mbox{MHI(Pileup)} & 0 & 1 & 0.20 \\ \mbox{Background Data} & 0 & 0 & 0.05 \\ \mbox{Background MC} & 1 & 1 & 0.07 \\ \mbox{Fit calibration} & 0 & 0 & 0.05 \\ \mbox{Modeling of hadronization} & & & & \\ \mbox{Flavor-dependent hadronization uncertainty} & 1 & 1 & 0.36 \\ \mbox{Flavor-dependent hadronization uncertainty} & 1 & 1 & 0.14 \\ \mbox{Modeling of the hard scattering process and radiation} & & & \\ \mbox{Parton distribution functions} & 1 & 1 & 0.16 \\ \mbox{Medeling of non-perturbative QCD} & & & \\ \mbox{Underlying event} & 1 & 1 & 0.16 \\ \mbox{Color reconnection} & 1 & 1 & 0.16 \\ \mbox{Color reconnection} & 1 & 1 & 0.16 \\ \mbox{Color reconnection} & 1 & 0.10 \\ \mbox{Total systematic uncertainty} & & 0.65 \\ \end{tabular}$	In-situ JSF factor	0	0	0.10	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Inter-calibration JES component	1	1	0.01	
Uncorrelated JES component010.14Other JES uncertainties000.00Lepton energy scale110.02 E_T^{miss} scale1110.06Jet energy resolution1110.07 b -tagging110.030.04MHI(Pileup)010.20Background Data000.05Background MC110.07Fit calibration000.05Modeling of hadronization110.05Flavor JES component110.36b fragmentation and B branching fractions110.36b fragmentation and factorization scales110.17ME-PS matching threshold110.16Medeling of non-perturbative QCDUnderlying event11Underlying event110.18Statistical uncertainty110.16Color reconnection110.10Total systematic uncertainty011Otal uncertainty000.10	MPF in-situ JES component	1	1	0.05	
Other JES uncertainties 0 0 0.00 Lepton energy scale 1 1 0.02 E_T^{miss} scale 1 1 0.06 Jet energy resolution 1 1 0.06 Jet energy resolution 1 1 0.07 b -tagging 1 1 0.03 Trigger 0 0 0.04 MHI(Pileup) 0 1 0.20 Background Data 0 0 0.05 Background MC 1 1 0.07 Fit calibration 0 0 0.05 Modeling of hadronization 1 1 0.05 Flavor JES component 1 1 0.05 Flavor-dependent hadronization uncertainty 1 1 0.14 Modeling of the hard scattering process and radiation	Uncorrelated JES component	0	1	0.14	
Lepton energy scale 1 1 0.02 E_T^{miss} scale 1 1 0.06 Jet energy resolution 1 1 0.07 b -tagging 1 1 0.03 Trigger 0 0 0.04 MHI(Pileup) 0 1 0.20 Background Data 0 0 0.05 Background MC 1 1 0.07 Fit calibration 0 0 0.05 Modeling of hadronization 0 0 0.05 Modeling of hadronization uncertainty 1 1 0.05 Flavor JES component 1 1 0.05 Flavor-dependent hadronization uncertainty 1 1 0.06 b fragmentation and B branching fractions 1 1 0.14 Modeling of the hard scattering process and radiation 1 0.16 Parton distribution functions 1 1 0.16 Renormalization and factorization scales 1 1 0.16 ME-PS matching threshold 1 1 0.16 <tr< td=""><td>Other JES uncertainties</td><td>0</td><td>0</td><td>0.00</td></tr<>	Other JES uncertainties	0	0	0.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Lepton energy scale	1	1	0.02	
Jet energy resolution110.17b-tagging110.03Trigger000.04MHI(Pileup)010.20Background Data000.05Background MC110.07Fit calibration000.05Modeling of hadronization000.05Flavor JES component110.05Flavor-dependent hadronization uncertainty110.36b fragmentation and B branching fractions110.14Modeling of the hard scattering process and radiation00.17Parton distribution functions110.16Renormalization and factorization scales110.16ME generator110.120.10Modeling of non-perturbative QCDUnderlying event110.18Statistical uncertainty110.100.10Total systematic uncertainty00.650.65	$E_{\rm T}^{\rm miss}$ scale	1	1	0.06	
b-tagging 1 1 0.03 Trigger 0 0 0.04 MHI(Pileup) 0 1 0.20 Background Data 0 0 0.05 Background MC 1 1 0.07 Fit calibration 0 0 0.05 Modeling of hadronization 1 1 0.05 Modeling of hadronization uncertainty 1 1 0.36 flavor JES component 1 1 0.36 flavor-dependent hadronization uncertainty 1 1 0.36 b fragmentation and B branching fractions 1 1 0.14 Modeling of the hard scattering process and radiation 1 0.14 Parton distribution functions 1 1 0.17 ME-PS matching threshold 1 1 0.16 ME generator 1 1 0.13 Top quark p_T 1 1 0.12 Modeling of non-perturbative QCD Underlying event 1 1 0.16 Color reconnection 1 1 0.10 <t< td=""><td>Jet energy resolution</td><td>1</td><td>1</td><td>0.17</td></t<>	Jet energy resolution	1	1	0.17	
Trigger000.04MHI(Pileup)010.20Background Data000.05Background MC111Fit calibration000.05Modeling of hadronization000.05Flavor JES component111Flavor-dependent hadronization uncertainty110.36b fragmentation and B branching fractions110.05Modeling of the hard scattering process and radiation110.06Renormalization and factorization scales110.17ME-PS matching threshold110.16ME generator110.13Top quark p_T 110.16Modeling of non-perturbative QCD110.16Color reconnection110.18Statistical uncertainty00.100.65Total systematic uncertainty0.650.65	b-tagging	1	1	0.03	
MHI(Pileup)010.20Background Data000.05Background MC111Fit calibration000.05Modeling of hadronization110.07Flavor JES component1110.05Flavor-dependent hadronization uncertainty110.36b fragmentation and B branching fractions110.06Renormalization functions110.06Renormalization and factorization scales110.17ME-PS matching threshold110.16ME generator110.12Modeling of non-perturbative QCD110.16Color reconnection110.18Statistical uncertainty00.100.65Total systematic uncertainty0.650.65	Trigger	0	0	0.04	
Background Data000.05Background MC1110.07Fit calibration000.05Modeling of hadronization110.05Flavor JES component1110.05Flavor-dependent hadronization uncertainty110.36b fragmentation and B branching fractions110.14Modeling of the hard scattering process and radiation110.06Parton distribution functions110.17ME-PS matching threshold110.16ME generator110.13Top quark p_T 110.16Modeling of non-perturbative QCDUnderlying event11Underlying event110.18Statistical uncertainty0.100.650.65Total uncertainty0.650.650.65	MHI(Pileup)	0	1	0.20	
Background MC1110.07Fit calibration000.05Modeling of hadronization1110.05Flavor JES component1110.36b fragmentation and B branching fractions110.36b fragmentation and B branching fractions110.06Renormalization and factorization scales110.17ME-PS matching threshold110.16ME generator110.13Top quark p_T 110.16Modeling of non-perturbative QCD110.16Statistical uncertainty110.18Statistical uncertainty0.100.650.65	Background Data	0	0	0.05	
Fit calibration000.05Modeling of hadronization110.05Flavor JES component1110.36Flavor-dependent hadronization uncertainty1110.36b fragmentation and B branching fractions110.14Modeling of the hard scattering process and radiation110.06Parton distribution functions110.06Renormalization and factorization scales110.17ME-PS matching threshold110.16ME generator110.13Top quark p_T 110.16Underlying event110.16Color reconnection110.18Statistical uncertainty0.100.650.65Total uncertainty0.650.650.65	Background MC	1	1	0.07	
Modeling of hadronization110.05Flavor JES component110.36b fragmentation and B branching fractions110.36b fragmentation and B branching fractions110.14Modeling of the hard scattering process and radiation110.06Parton distribution functions110.06Renormalization and factorization scales110.17ME-PS matching threshold110.16ME generator110.13Top quark p_T 110.12Modeling of non-perturbative QCD110.16Color reconnection110.18Statistical uncertainty0.100.650.65Total systematic uncertainty0.650.65	Fit calibration	0	0	0.05	
Flavor JES component1110.05Flavor-dependent hadronization uncertainty1110.36b fragmentation and B branching fractions1110.36Modeling of the hard scattering process and radiation110.06Parton distribution functions1110.06Renormalization and factorization scales110.17ME-PS matching threshold110.16ME generator110.13Top quark p_T 110.12Modeling of non-perturbative QCD110.16Underlying event110.16Statistical uncertainty0.100.10Total systematic uncertainty0.650.65	Modeling of hadronization				
Flavor-dependent hadronization uncertainty1110.36b fragmentation and B branching fractions110.14Modeling of the hard scattering process and radiationParton distribution functions110.06Renormalization and factorization scales110.17ME-PS matching threshold110.16ME generator110.13Top quark p_T 110.12Modeling of non-perturbative QCD110.16Underlying event110.16Statistical uncertainty0.100.100.65Total uncertainty0.650.650.65	Flavor JES component	1	1	0.05	
b fragmentation and B branching fractions110.14Modeling of the hard scattering process and radiationParton distribution functions110.06Renormalization and factorization scales110.17ME-PS matching threshold110.16ME generator110.13Top quark p_T 110.12Modeling of non-perturbative QCD110.16Underlying event110.16Statistical uncertainty0.100.10Total systematic uncertainty0.650.65	Flavor-dependent hadronization uncertainty	1	1	0.36	
Modeling of the hard scattering process and radiationParton distribution functions11Renormalization and factorization scales11ME-PS matching threshold11ME generator11Top quark p_T 11Modeling of non-perturbative QCD11Underlying event11Color reconnection11Statistical uncertainty0.10Total systematic uncertainty0.65	b fragmentation and B branching fractions	1	1	0.14	
Parton distribution functions110.06Renormalization and factorization scales110.17ME-PS matching threshold1110.16ME generator1110.13Top quark p_T 110.121Modeling of non-perturbative QCD110.16Underlying event110.16Color reconnection110.18Statistical uncertainty0.100.65Total systematic uncertainty0.65	Modeling of the hard scattering process and radiation				
Renormalization and factorization scales11 0.17 ME-PS matching threshold111 0.16 ME generator111 0.13 Top quark p_T 110.12Modeling of non-perturbative QCD U U Underlying event110.16Color reconnection110.18Statistical uncertainty 0.10 0.65 Total uncertainty 0.65 0.65	Parton distribution functions	1	1	0.06	
ME-PS matching threshold 1 1 0.16 ME generator 1 1 0.13 Top quark p_T 1 1 0.12 Modeling of non-perturbative QCD	Renormalization and factorization scales	1	1	0.17	
ME generator 1 1 0.13 Top quark p_T 1 1 0.12 Modeling of non-perturbative QCD	ME-PS matching threshold	1	1	0.16	
Top quark p_T 110.12Modeling of non-perturbative QCDUnderlying event110.16Color reconnection110.18Statistical uncertainty0.100.65Total uncertainty0.65	ME generator	1	1	0.13	
Modeling of non-perturbative QCDUnderlying event1Color reconnection1110.18Statistical uncertainty0.10Total systematic uncertainty0.65Total uncertainty0.65	Top quark p_T	1	1	0.12	
Underlying event110.16Color reconnection110.18Statistical uncertainty0.100.10Total systematic uncertainty0.65Total uncertainty0.65	Modeling of non-perturbative QCD			1	
Color reconnection110.18Statistical uncertainty0.10Total systematic uncertainty0.65Total uncertainty0.65	Underlying event	1	1	0.16	
Statistical uncertainty0.10Total systematic uncertainty0.65Total uncertainty0.65	Color reconnection	1	1	0.18	
Total systematic uncertainty0.65Total uncertainty0.65	Statistical uncertainty			0.10	
Total uncertainty 0.65	Total systematic uncertainty			0.65	
	Total uncertainty			0.65	

$= 172.38 \pm 0.10$ (stat.) ± 0.65 (syst.) GeV

TOP PAIRS FOR CONSTRAINING SYSTEMATIC UNCERTAINTIES

m_t modelling systematics^(*)

- Radiation: at the LHC top quark are often produced with extra jets from the initial (or final) state
 - Higher energy, gluons from initial state (more colour)
 - About half of the event with an extra jet with p_T >50 GeV!
 - Impact on jet pairing, systematic errors due to radiation description in MC can be dominant
- Colour connection: the issue of the decay of an unstable coloured particle before hadronization
 - One of the decay products is connected to the rest of the event. In MCs the effect is driven by shower evolution and the specific connection model, steered by parameters.
 - Impact on different soft particle/jet emission between jets and mass reconstruction via the decay products
- Fragmentation function/model of the b quark
 - Impact on analyses exploiting (semi)exclusive b decays
 - Blindly use LEP/SLD tunes for now

(*) Non exhaustive list, but most important modelling systematic sources for top mass reconstruction. CMS approaches used, ATLAS have similar techniques.

Constraining radiation

- Use observables which are maximally sensitive to radiation to constrain Monte Carlos
 - In MCs: change by a factor two the renormalization and factorization scales in the ME MC. Shower emission scale in the PS is changed accordingly. Also vary the matching scale for multi-leg generators
- Inclusive jet multiplicity
 - Consistent agreement across channels and energies
- Jet gap fraction
 - Fraction of events that do not have a jet emission (in a defined angular range) above a certain p_T cut
 - TH uncertainties typically bracket the data. Central CMS tuning also describes well ATLAS data
 - CMS data able to exclude extreme variations

Reconstructed top mass as a function of kinematics

CMS-PAS-TOP-14-001

MG, Pythia P11

MG, Pythia P11noCR

400

MC@NLO, Herwig

CMS Preliminary, 19.7 fb⁻¹, √s = 8 TeV, I+jets

MG, Pythia Z2

Powheg, Pythia Z2⁴

<m^{1D}> [GeV]

a t

- CMS expands the top mass reference measurement as a function of ΔR_{qq} , η_b , $p_T(t)$, $p_T(tt)$. Check observables sensitive to radiation and CR effects
 - Use semileptonic events and choose the two best jet permutations after a kinematic fit.
 - The 1D mass determination are shown. Agreement also for the 2D analyses
 - Data not sufficient yet for a discrimination among the models (also agreeing among each other)

A closer look to b fragmentation

CMS PAS TOP-13-007

- We have so much statistics that we can envisage a bottom physics program by using only top pair events
- In situ constraining of b fragmentation may be possible
 - Exclusive decays can be reconstructed
 - Work ongoing in finding the best variables helping in testing and constraining the b fragmentation

TOP MASS: ALTERNATIVE TECHNIQUES IN CMS

STRANGEBEAVER.com

Why bother?

- Precision measurements can become an increasingly important task at the LHC RunII. Maybe the only available task at all.
- Issue #1 for m_t: the classical measurements are dominated by systematic errors
 - Most of which are fully correlated across channels, methods and experiments (even at different accelerators)
- Issue #2 for m_t: connect convincingly what experimentalists measure/infer with what should enter the fits to the SM (a properly defined short distance mass)
- It becomes essential to perform and envisage alternative measurements of the top mass, and attack both issues whenever possible:
 - Reduce the total error by combining estimators of the top mass which present as much as possible uncorrelated systematic uncertainties
 - Construct analyses that are explicitly sensitive to the top pole mass (see also Marina's talk)

The $m_{\ell b}$ method

 Look for visible masses (as m_{lb}) as proxies of the top mass.

$$m_{\rm lb}^2 = \frac{m_t^2 - m_W^2}{2} \left(1 - \cos \theta_{lb} \right)$$

- Use fully leptonic eµ events to favour a very "clean" environment
 - By choosing the highest p_T b-jet and taking only the pairing minimizing m_{lb} the correct combination is found 85% of the time
 - > Perform a χ^2 fit to the shape of the $m_{\ell b}$ distribution

The $m_{\ell b}$ method

 Experimental systematic uncertainties dominated by radiation (±0.6 GeV), bfragmentation (±0.6 GeV) and the description of the top p_T. (±0.7 GeV)

$m_t = 172.3 \pm 1.3 \text{ GeV}$

- Can also compare data directly with MCFM (NLO only in production) after a detector folding by using a response matrix
 - Use phase space definition matching the one used in the analysis
- Directly compare distributions with the pole mass
- TH uncertainties now derived on MCFM: scales, PDFs, value of the b mass.

$$m_t = 171.4 \, {}^{+1.0}_{-1.1} \, \text{GeV}$$

The B hadron lifetime technique CMS PAS TOP-12-030

- The relativistic boost of the b quark depends linearly on mt Get rid of the energy scale uncertainties in the jet
- Semileptonic and dilepton final states are used
- $L_{\rm xy} = \gamma_{\rm b} \beta_{\rm B} \tau_{\rm B} \approx 0.4 \cdot \frac{m_{\rm t}}{m_{\rm B}} \beta_{\rm B} \tau_{\rm B}$ In each selected event, the secondary vertex with largest Lxy is chosen, and the median of the distribution of these Lxy is used to extract mt
- Important to subtract the backgrounds by using data driven distributions from CMS Simulation, √s=8 TeV control regions CMS preliminary, vs=8 TeV, L=19.6 fb⁻¹
 - Lxy reconstruction tested on bb events (tight b tag on one side), excellent agreement DT/MC in all the p_T range

b

The B hadron lifetime technique

- The analysis is calibrated on MC
- The dominant systematic uncertainties are expected to come from hadronisation
- Conservative approach to also quote all difference MC/DT on the top p_T as extra systematic error

	Source	$\Delta m_{\rm t}$ [GeV]				
		μ +jets	e+jets	еµ		
Statistical		1.0	1.0	2.0		
	Jet energy scale	0.30 ± 0.01	0.30 ± 0.01	0.30 ± 0.01		
	Multijet normalization (ℓ +jets)	0.50 ± 0.01	0.67 ± 0.01	-		
Experimental	W+jets normalization (ℓ +jets)	1.42 ± 0.01	1.33 ± 0.01	-		
	DY normalization $(\ell \ell)$	-	-	0.38 ± 0.06		
	Other backgrounds normalization	0.05 ± 0.01	0.05 ± 0.01	0.15 ± 0.07		
	W+jets background shapes (ℓ +jets)	0.40 ± 0.01	0.20 ± 0.01	-		
	Single top background shapes	0.20 ± 0.01	0.20 ± 0.01	0.30 ± 0.06		
	DY background shapes $(\ell \ell)$	-	-	0.04 ± 0.06		
	Calibration	0.42 ± 0.01	0.50 ± 0.01	0.21 ± 0.01		
71	Q^2 -scale	0.47 ± 0.13	0.20 ± 0.03	0.11 ± 0.08		
	ME-PS matching scale	0.73 ± 0.01	0.87 ± 0.03	0.44 ± 0.08		
Theory	PDF	0.26 ± 0.15	0.26 ± 0.15	0.26 ± 0.15		
	Hadronization model	0.95 ± 0.13	0.95 ± 0.13	0.67 ± 0.10		
	B hadron composition	0.39 ± 0.01	0.39 ± 0.01	0.39 ± 0.01		
_	B hadron lifetime	0.29 ± 0.18	0.29 ± 0.18	0.29 ± 0.18		
L	Top quark $p_{\rm T}$ modeling	3.27 ± 0.48	3.07 ± 0.45	2.36 ± 0.35		
_	Underlying event	0.27 ± 0.51	0.25 ± 0.48	0.19 ± 0.37		
	Colour reconnection	0.36 ± 0.51	0.34 ± 0.48	0.26 ± 0.37		

 $m_{\rm t} = 173.5 \pm 1.5_{\rm stat} \pm 1.3_{\rm syst} \pm 2.6_{p_{\rm T}({\rm t})} \,{\rm GeV}$

Extraction of m_t from the cross section

- Exploit the dependence of σ_{tt} on m_t and α_s
 - Parametrize measured and predicted cross section as a function of the top mass
 - \circ Need the full dependence of analyses' acceptances on m_t .
 - \circ Extract m_t by using a joint likelihood approach
 - Method to directly access the pole mass (even though not competitive)

Kinematic end point method in di-leptons

- Exploit the same procedure as for hypothetical NP signature where none of the masses is known and can be determined in isolation from the others
 - First determine together the W, top and neutrino mass
 - > Then apply a constrain to the W and the neutrino to get the known masses
- Knowing p(t), p(tbar) (hence the top rest frames) one could exploit kinematics to link distribution endpoints to the masses into play. Focus on dilepton decays
- Use variables which are least sensitive to the event and top p_T s: $M_{T2\perp}^{210}$, $M_{T2\perp}^{221}$, $M_{b\ell}$

$$M_T^2 \equiv m_{\nu}^2 + m_{\ell}^2 + 2(E_T^{\nu} E_T^{\ell} - \mathbf{p}_T^{\nu} \cdot \mathbf{p}_T^{\ell})$$
$$M_{T2} \equiv \min_{\mathbf{p}_T^{\nu_a} + \mathbf{p}_T^{\nu_b} = \mathbf{p}_T^{\text{miss}}} \{\max(m_T^a, m_T^b)\}$$

 $M_{\rm T} {\bf 2} \bot$ is $M_{\rm T} {\bf 2}$ where all transverse quantities are defined w.r.t. the direction of the two-parents system

 M_{T^2} is the min parent mass consistent with two identical decay chains (a, b) terminating in a missing particle.

Eur. Phys. J. C73 (2013) 2494

Kinematic end point method in di-leptons

- Selection requires two isolated leptons (non-Z-like) and two b-tagged jets. Use largest mass bl pairings
- Use data to model backgrounds with contribution beyond the endpoints (typically mistagged jets)
 > Use control regions with anti-b-tags
- Likelihood fit to the endpoint regions $a \in \{210, 221, M_{b\ell}\}$ $\mathcal{L}_i^a(x_i|x_{\max}) = \alpha \int S^a(y|x_{\max}) \mathcal{R}_i^a(x_i - y) \, dy + (1 - \alpha) B^a(x_i)$ $S(x|x_{\max}) \equiv \begin{cases} \mathcal{N}(x_{\max} - x) & x_{lo} \leq x \leq x_{\max} \\ 0 & x_{\max} \leq x \leq x_{hi} \end{cases}$ \gg The x_{\max} linked to the masses via analytic functions
 - Systematic error dominated by JES

	Constraint								
Fit Quantity	None	$m_{\nu} = 0$	$m_{\nu} = 0$ and $M_W = 80.4$						
m_{ν}^2 (GeV ²)	$-556 \pm 473 \pm 600$	(0)	(0)						
M_W (GeV)	$72\pm7\pm9$	$80.7\pm1.1\pm1$	(80.4)						
M_t (GeV)	$163\pm10\pm11$	$174.0\pm0.9\pm2$	$173.9 \pm 0.9^{+1.2}_{-1.8}$						

 $M_t = 173.9 \pm 0.9 \text{ (stat)} ^{+1.2}_{-1.8} \text{ (syst)}$ GeV

TOP MASS COMBINATIONS

AKA: how to deal with 1001 systematic errors

Combining may be tricky

- Combining results from different analyses and experiments is a necessity for precision measurements
 - ➢ In general a very difficult task (different conventions, error splitting, information in the documentation, missing or non-recoverable information,...)
 - Communication among the experts is of the essence but...

• ...assumptions are sometime needed

- Categories of systematics
- Correlations of systematics (often difficult to assess)
- For the top mass need to combine a consistent and unambiguous set of measurements
 - Just measurements performed via direct reconstruction for now
 - Use a simple method like the Best Linear Unbiased Estimate

BLUE primer

- Method universally used so far for combining measurements
 - Very practical when a more detailed combination is not feasible (different experiments/time, no likelihoods,...)
- Given a linear combination of measurements: $\hat{Y} = \tilde{\lambda} \mathbf{y} = \sum_{i=1}^{n} \lambda_i y_i$

$$\tilde{\mathbf{U}}\boldsymbol{\lambda} = \sum_{i=1}^{n} \lambda_i = 1$$

 $\sum_{i=1}^{i=1}$ The Best Linear Unbiased Estimate simply finds the vector of coefficients minimizing the total variance:

$$\lambda_i = \frac{\left(\mathcal{M}^{-1}\mathbf{U}\right)_i}{\left(\tilde{\mathbf{U}}\mathcal{M}^{-1}\mathbf{U}\right)} \qquad \operatorname{var}(\hat{Y}) = \sigma_{\hat{Y}}^2 = \sum_{i=1}^n \sum_{j=1}^n \lambda_i \,\mathcal{M}_{ij} \,\lambda_j = \frac{1}{\left(\tilde{\mathbf{U}}\mathcal{M}^{-1}\mathbf{U}\right)}$$

- \triangleright Y is the combined value, λ the vector of linear coefficients
- M is the (NxN) covariance of the n measurements
- U is a vector of all i's (i.e. contraction by U means summing all indexes)

Comments about high correlation regimes

• Best understood with only two measurements A and B with errors $\sigma_A < \sigma_B$ and correlation ρ

$$\hat{Y} = \lambda_A y_A + \lambda_B y_B \qquad \lambda_A = \frac{\sigma_B^2 - \rho \sigma_A \sigma_B}{\sigma_A^2 + \sigma_B^2 - 2\rho \sigma_A \sigma_B}$$
$$\sigma_{\hat{Y}}^2 = \frac{\sigma_A^2 \sigma_B^2 (1 - \rho^2)}{\sigma_A^2 + \sigma_B^2 - 2\rho \sigma_A \sigma_B} = \frac{1}{I} \qquad \lambda_B = \frac{\sigma_A^2 - \rho \sigma_A \sigma_B}{\sigma_A^2 + \sigma_B^2 - 2\rho \sigma_A \sigma_B}$$

- Varying ρ , the combined error is maximum (equal to σ_A) for $\rho = \sigma_A / \sigma_B$, where λ_B flips sign
 - \blacktriangleright Low correlation region $\rho < \sigma_A / \sigma_B$
 - Both λ_A and λ_B are > 0
 - \circ Info decreases (error increases) as ρ increases
 - ► High correlation region $\rho > \sigma_A / \sigma_B$
 - One coefficient λ_B is < 0
 - $\circ~$ Info increases (error decreases) as ρ increases
 - **>** Boundary $\rho = \sigma_A / \sigma_B$ (max correlation)
 - One coefficient λ_B is = o
 - Error is maximum = σ_A (marginal info from B is o) $\frac{0.6}{0.4}$
- Introduce information weights (IW: A, B, ρ)
 - Sum is equal to 1 by construction
 - > IW from ρ is minimum (negative) for $\lambda_B = 0$

March 2013: first ever top mass World Average

- Big effort for reaching common conventions in the splitting of systematic unc.s
 Across the LHC experiments, but also talking with the Tevatron.
- Most notably (but not only) on the JES uncertainties
 - ➢ iJES: in situ calibration, statistical origin
 - stdJES: light jet calibration with data, only correlated within the same exp
 - flavourJES : from different jet energy responses (gluon vs quarks)
 - > bJES : modelling of the response for b jets. TH uncertainties correlate it among exp.s

	Input measurements and uncertainties in GeV													
		CI	DF		D0		ATLAS		CMS		World			
Uncertainty	l+jets	di-l	all jets	$E_{\rm T}^{\rm miss}$	l+jets	di-l	l+jets	di-l	l+jets	di-l	all jets	Combination	01110	OTEN
m _{top}	172.85	170.28	172.47	173.93	174.94	174.00	172.31	173.09	173.49	172.50	173.49	173.34	PLHC	PIEV
Stat	0.52	1.95	1.43	1.26	0.83	2.36	0.23	0.64	0.27	0.43	0.69	0.27	0.0	0.0
iJES	0.49	n.a.	0.95	1.05	0.47	0.55	0.72	n.a.	0.33	n.a.	n.a.	0.24	0.0	0.0
stdJES	0.53	2.99	0.45	0.44	0.63	0.56	0.70	0.89	0.24	0.78	0.78	0.20	0.0	0.0
flavourJES	0.09	0.14	0.03	0.10	0.26	0.40	0.36	0.02	0.11	0.58	0.58	0.12	0.0	0.0
bJES	0.16	0.33	0.15	0.17	0.07	0.20	0.08	0.71	0.61	0.76	0.49	0.25	0.5	1.0
MC	0.56	0.36	0.49	0.48	0.63	0.50	0.35	0.64	0.15	0.06	0.28	0.38	1.0	1.0
Rad	0.06	0.22	0.10	0.28	0.26	0.30	0.45	0.37	0.30	0.58	0.33	0.21	1.0	1.0
CR	0.21	0.51	0.32	0.28	0.28	0.55	0.32	0.29	0.54	0.13	0.15	0.31	1.0	1.0
PDF	0.08	0.31	0.19	0.16	0.21	0.30	0.17	0.12	0.07	0.09	0.06	0.09	1.0	1.0
DetMod	< 0.01	< 0.01	< 0.01	< 0.01	0.36	0.50	0.23	0.22	0.24	0.18	0.28	0.10	0.0	0.0
<i>b</i> -tag	0.03	n.e.	0.10	n.e.	0.10	< 0.01	0.81	0.46	0.12	0.09	0.06	0.11	0.0	0.0
LepPt	0.03	0.27	n.a.	n.a.	0.18	0.35	0.04	0.12	0.02	0.14	n.a.	0.02	0.0	0.0
BGMC	0.12	0.24	n.a.	n.a.	0.18	n.a.	n.a.	0.14	0.13	0.05	n.a.	0.10	1.0	1.0
BGData	0.16	0.14	0.56	0.15	0.21	0.20	0.10	n.a.	n.a.	n.a.	0.13	0.07	0.0	0.0
Meth	0.05	0.12	0.38	0.21	0.16	0.51	0.13	0.07	0.06	0.40	0.13	0.05	0.0	0.0
MHI	0.07	0.23	0.08	0.18	0.05	< 0.01	0.03	0.01	0.07	0.11	0.06	0.04	1.0	0.0
Total Syst	0.99	3.13	1.41	1.36	1.25	1.49	1.53	1.50	1.03	1.46	1.23	0.71		
Total	1.12	3.69	2.01	1.85	1.50	2.79	1.55	1.63	1.06	1.52	1.41	0.76		29

arXiv:1403.4427 ATLAS CONF 2014-008 CMS PAS TOP-13-014 CDF-NOTE-11071 D D0-NOTE-6416

-7.1

27.7

3.1

7.5

_

di-l

di-l

Correlations (IIW_{corr})

CMS

l+jets

all jets

21.9

51.3

25.1

29.2

-167.3

1.2

7.6

0.1

0.8

 The ensemble of correlations gives an impact way more important that any individual measurement

Testing the stability

 Different correlations are tested, varying them separately and even in a correlated way

Results stable
 within 200 MeV
 for the central
 value, 300 MeV
 for the error

Yet another summary

19.7 fb⁻¹(8 TeV) + 5.1 fb⁻¹(7 TeV)

175.5 ± 4.6 ± 4.6 GeV

(value ± stat ± syst)

Many things happened since...

 Very dynamic field, making a combination soon obsolete

CMS Preliminary CMS 2010, dilepton

JHEP 07 (2011) 049, 36 pb-1

Speculations and work about Do-CMS

- A new combination is in the works, but still on hold for an apparent tension among the measurements
- Several crosschecks have been performed to assess whether the two most apart measurements (Do and CMS) are compatible with each other
 - > This is a potentially biasing procedure
 - Worried about the assessment of correlations of systematic errors, and the fact that the difference be due to something treated differently in the two analyses
- Comparing methods and results (on MCs)
 - Consistent sensitivity of the methods to a bJES variation
 - Check size and sign of systematic variations, looking for unexpected anticorrelations. Major systematics are found to be OK: JEC, ME generator, bfragmentation, colour reconnection
- Work is still ongoing before moving to an update of the World Average
 - Next (final) test: use common events to determine the correlations or biases (compared to errors in play)

OUTLOOK AND CONCLUSIONS

Perspectives for the new runs

- Many assumptions: take with grain of salt
 - Increase of cross section compensates larger inefficiencies from triggering (+reconstruction)
 - Detector improvements after LSII should help keeping the assumption above true also in tremendous PU conditions as for 3000/fb
 - Data itself will be used to constrain systematic sources, especially those due to MC modelling (light- and b-JES will be fitted in situ when possible)
- Typical reduction of systematic errors:
 - Light-JES: factor 2 (30/fb) to 4 (3000/fb)
 - b-JES: factor 2 (30/fb) to 10 (3000/fb)
 - Radiation: factor 2 (30/fb) to 4 (3000/fb)
 - b-tagging: factor 2
 - CR: factor 2 (30/fb) to 10 (3000/fb)
 - Lepton ES, PU, PDFs, UE, background and other 0.2 TH errors stay constant

Conclusions

- Experimentalists have measured the (MC!) top mass with direct reconstruction techniques at the level of 750 MeV, or better by now (likely below 600 MeV)
- We should determine how this mass relates to a well defined short distance mass, and quantify an extra possible error on it
- We have experimental methods more sensitive to a short distance mass to be studied, and methods largely uncorrelated to the present ones to be exploited
- We have plenty more data to be taken in the next years, with which systematics effect can be constrained even further.
- In the long run it does not look impossible to reach, in practice, an error on the (MC) top mass of the order of Λ_{QCD}. That would also likely correspond to the end of this game (?).