Dynamic partitioning con LSF per Multicore

Stefano Dal Pra

INFN-T1
stefano.dalpra@cnaf.infn.it

CCR, 26/05/2015

INFN

o multicore

Q Implementazione

e charts

Q Installazione

multicore

Multicore e cluster HEP

Motivazione

@ Col Run-2 di LHC Gli esperimenti stimano di avere in
produzione ~ 50% di job multicore (8 slot, nello stesso
host).

@ Rischio starvation: non ci sono mai 8 slot liberi nello stesso
host

@ Hostgroup dedicato: Host inutilizzati se non ci sono
abbastanza job multicore, sottodimensionato se ce ne
sono troppi.

@ Dynamic Partition: set dinamico di host dedicati a

multicore, seguendo la richiesta.
Ogni host aggiunto va in Draining — slot inutilizzati.

&

multicore

Configurazione al T1

194 WN, da 24 e 16 slots
@ 132 x 24 + 62 x 16 = 4160 slots, 45KHS06
@ 4 rack; variabili a piacere

- Dynamic Partitioning: numero di nodi dedicati a mcore
varia secondo necessita.

- Job m—core (m = 8 slot) e himem (2 slot)
- max 4 himem per nodo

- A regime un WN 24 slot ha 2 mc + 4 hm oppure 3 mc
- i job hm permettono di ridurre l'inutilizzo dei cores dovuto
alle fasi di Drain.

G

Implementazione

Come funziona

Componenti e logica

@ script: elim, esub, director, in python; due programmi
ausiliari in ¢, un conf. file
@ elim: gira in ogni WN disponibile per mcore, pubblica un
flag di stato mcore==0/1
@ esub: gira ad ogni esecuzione di bsub, riconosce e
modifica tuttii job:
@ i job multicore richiedono WN con mcore==
@ ijob singlecore richiedono WN con mcore!=1
@ director: gira ogni 6 min in un nodo, decide chi entra e chi
esce dalla partizione, logga lo stato (per monitoring e
accounting).

@ nodeinfo.txt; badhosts.txt: Potenza HS06, num.
cores, slots; elenco host chiusi. !

)

c

Implementazione

Transizioni
assegnare i WN alla partitione mcore

Gli stati dei nodi Mappa delle Transizioni

I WN passano tra questi
insiemi:
@ M: disponibile per mcore
@ D: assegnato a mcore
@ R: solo job mcore in run
@ P: tolto da mcore

charts

Dynamic partition
mcore queue activity

Multicore running and pending Jobs, Gen 2015

)
INFN
C

7/10

Mcore jobs (Mar 201

Mcore partition, 7 da

1400 avg: mc = 795.83; used = 965.85; empty = 54.81

1200
1000

w 800
° P S S
@ 600 dedicated slots|
400 ysed slots
200 - mcore ;
0 Y L L L 1
1] 1 6 7

X 3 4
Fill Factor; avg = 0.94

0.8 : H I
0.6 R B : A
041 e e :]
D2 1
— fill factor | :
ool ——— | L L L L
0 1 2 3 4 5 6 7 N
Days, 2015-03-04:17:00 to 2015-03-11:16:54 (o

charts

Himem jobs (Mar 2015)

HIMEM, 7 days

3000

A
INFN
C

03105 03108 03107 03108 03109 0310 0311 o032
W Total W GRID running M Localrunning M Unknown I Pending 9 suspended 9/10

Installazione

Configurazione, repository

Configurazioni (JSON syntax)

"mcore_groups": ["rack20603", "rack20501"],
"badhosts_fn": "badhosts.txt",

"log_fn": "mcore.log",

"log_dbg": "mcore_act.log",

"hist fn": "mcore_hist.json",
"max_hostdrain":18,

"max_emptyslots":157,
"max_empty_ratio":0.3,

git repository, con script e guide
@ https://baltig.infn.it/dalpra/lsf_

multicore_dynamic_partition/

@ https://indico.cern.ch/event/304944/ ;
session/9/contribution/455

N

10/10

Applicazione del Dynamic partitioning con
LSF per provisioning di risorse cloud

Stefano Dal Pra
Vincenzo Ciaschini
Luca dell’Agnello

INFN-T1
stefano.dalpra@cnaf.infn.it

CCR, 26/05/2015

INFN
C

multicore

Problem, usecase, motivation

@ The whole INFN-T1 farm (~ 15000 cores) is currently
accessible as a “traditional" Grid resource (CREAM
Computing Element, LSF Batch System)

@ Problem: We would like to be able to dedicate hardware
resources to Cloud Computing for HEP purposes in a
flexible and reversible manner.

@ Use cases:

@ A VO may want to dedicate a certain amount of computing
power to a “cloud computing campaign”, then move back
the resources to Grid.

o A VO may want to perform a “smooth migration” from Grid
to cloud, moving resources a few at a time.

o A team may need interactive usage of computing
resources.

&

multicore

Shares in the Grid farm must be adjusted, so that:

@ Any experiment moving k WN from Grid to Cloud, should
have its share in LSF reduced accordingly.

@ Any experiment not using cloud resources, should not be
affected by the reduced power of the Grid farm.

Wall-clock Time

An overall Wallclock—Time must be accounted, by adding two
components:

@ Grid—side, the Wall—clock time is accounted per—job, as
usual.

@ Cloud-side, the Wall—clock time is accounted per—node

&

multicore

Exploiting a solution: dynamic partitioning

A dynamic partitioning mechanism has been deployed at
INFN-T1 for the provisioning of multi—core resources. The
same technique can be adapted to achieve a Cloud partition.

@ The Cloud partition can grow or shrink on a per—need
basis (Elasticity).

@ On each node, both LSF and Openstack daemons are
active. Only one or the other mode can be enabled at a
time.

@ A Draining phase is needed before moving from a partition
to the other

@ When a WN is assigned to the Cloud partition, LSF stops
dispatching jobs to it (Draining). Then it becomes available
to the Cloud Controller.

)

c

multicore

The implementation

@ elim script. It runs on the WN and defines the value of the
dcloud flag.

@ esub script. It is executed at the submission host for each
submitted job, enforcing a request for nodes having a
resource dcloud!=1.

@ director script. implements the logic of the partitioning
model. It runs at regular times on a master node and
selects which WNs or CNs are to be moved from the
partition they belong to.

&

multicore

The Partition Director

@ Implemented as a finite state machine
@ LSF side:

@ manages the status of the dcloud flag on the nodes. This
is achieved by customizing esub, e1im scripts and
enable/disable job dispatching.

@ Cloud side:

o enable/disable scheduling to the CNs (ref. to Openstack,
Juno; this is done using api call to nova—compute).

o destroy existing VM on the CN after a timeout (~24h). This
can be achieved thanks to the work done by the WLCG
MachineJobFeatures TaskForce.

&

multicore

The Dynamic Partitioning model

Figure: The partition director triggers role switch of nodes

multicore

o=
)

Figure: The Status Transition Map

The finite state machine

=

o

&

multicore

Dynamic of the dcloud partition

@ At T=0,allnodes are cic G={cy,...,Cn}

@ When k Compute Nodes are requested, they are moved to
Drain from Gto Dg = {cq, ..., ck} by the director.

@ When the drain finishes, it is moved from Dg to C and
becomes available as a Compute Node.

@ When a Compute Node ¢; € C must work again as a WN,
it is moved to D¢ and begins a drain time. The duration
can be specified through the shutdownt ime parameter
from the machinejob features.

@ When a Compute Node ¢; € D¢ expires its
shutdowntime, Existing VMs are destroyed and the node
moves to G.

@ The elim script on each node w; updates its dcloud status:

1 ifcge DgUC
defoud(wi) = { 0 ifo e GUDe (o

multicore

Driving the partition

Possible approaches

@ Admin driven: specyfies number of nodes, ownergroup and
direction of the migration, upon request from the
experiment.

@ User driven: Two alternatives

e integration with the cloud—scheduler.

@ balancing pending grid jobs vs. rate of cloud resource
requests: The higher would set the direction of the role
switching. Similar to pilot style: a VM may be unsatisfied
just like a pilot job may not get work to do.

&

10/12

multicore

Conclusions

@ Dynamic partitioning enables cohexistence of Grid and
Cloud applications.

@ Transition from Cloud—mode to Grid—mode requires to deal
with existing VMs after a draining time. User’s applications
should be machinejob aware.

G

11/12

