

Il Tier-1

(chi siamo, dove siamo, dove andremo....)

Luca dell'Agnello May 27 2015

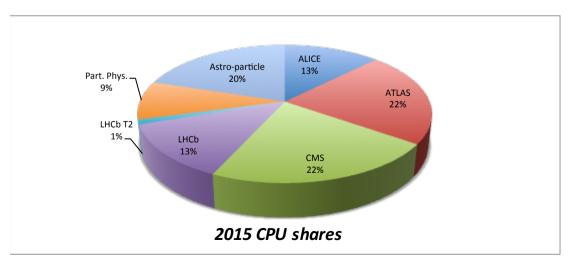
The INFN Tier-1

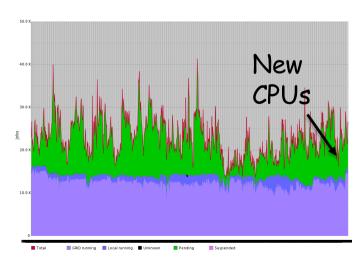
CNAF is officially supporting ~30 experiments

-4 LHC

- Ten Virtual Organizations in opportunistic usage via Grid services
- LSPE and EUCLID in a near future?

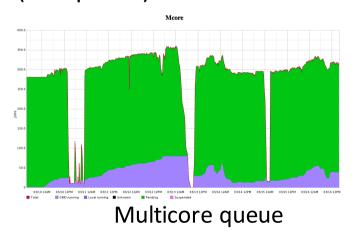
Organization

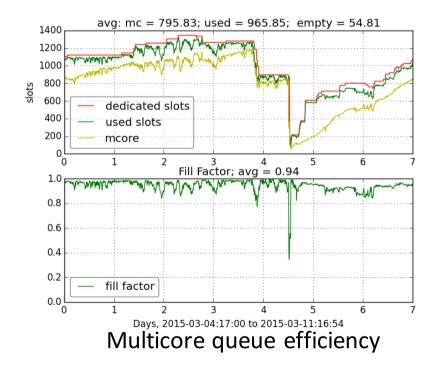

- The Tier-1 staff is composed by 23 people structured in 5 groups:
 - Farming unit (farm, CEs, UIs...)
 - Data Management unit (storage, srm and dbs)
 - Network (CNAF LAN and WAN connections)
 - Facility management group
 - User support (interface to experiments)
- Our main challenge is to guarantee H24 support
 - To avoid H24 manpower requirements, all services are completely redundant and based on enterprise hw



Services and resources: HTC

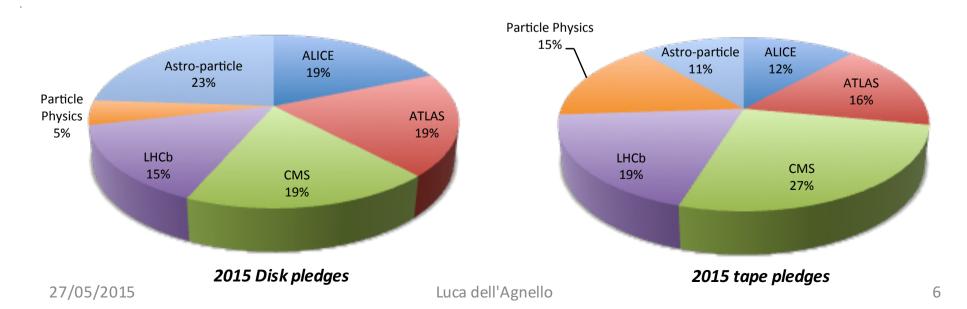
- WLCG Tier-1 standard services offered to all users/scientific collaborations
 - CPU resources assigned according to fair share mechanism
 - Non grid access supported
 - Cloud access under evaluation/test
- 1 general purpose farm
 - Currently ~ 180 KHS06 (~17K job slots)
 - ~100K jobs/day
 - Whole farm rebooted twice in the past 12 months (2 critical upgrades)
 - Dynamic partitioning supported (Atlas and CMS)

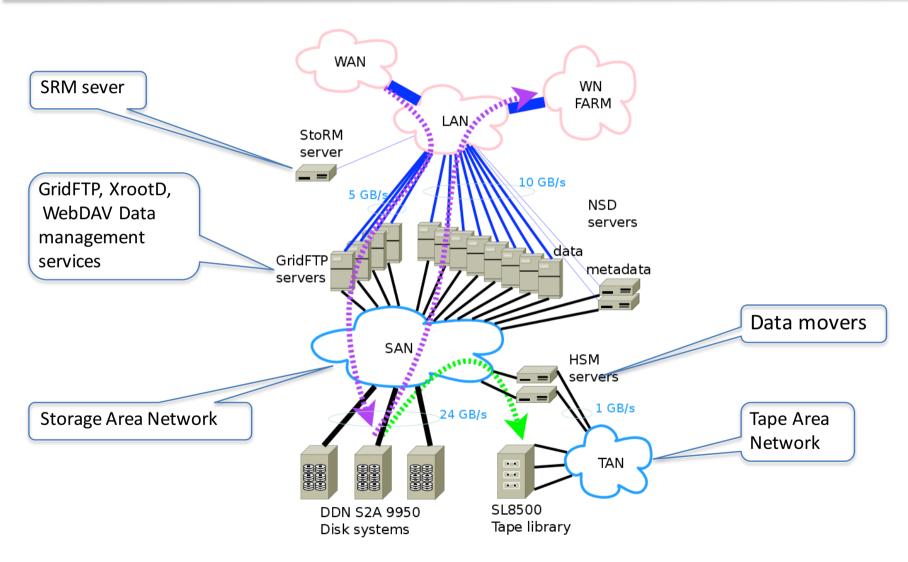




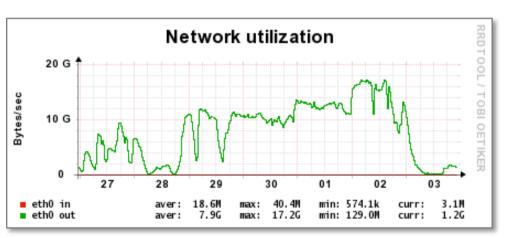
Dynamic partitioning: Multicore support

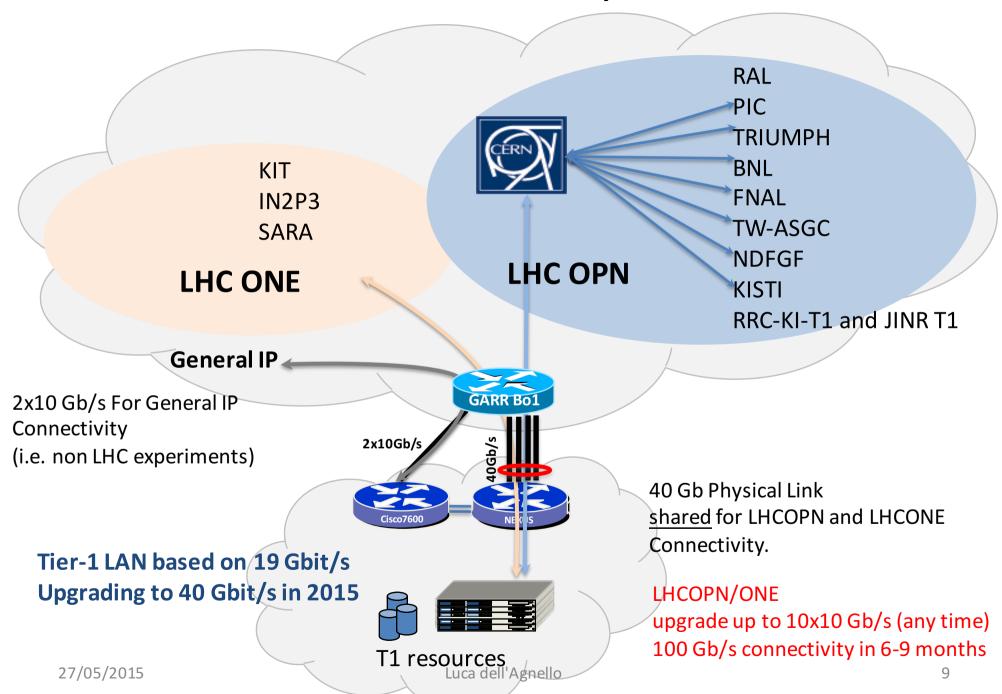
- Dynamic partitioning on LSF farm
 - Allows to dynamically move WNs to a dedicated multicore queue
 - In production since last August
 - Minimization of waste of resources due to the draining phase
- CMS is now 100% multicore
- Same mechanism can be used to allocate WNs to a cloud controller (test phase)




Services and resources: storage

- Standard HSM service for all experiments
 - GEMSS (Grid Enabled Mass Storage System)
 - Both local and grid access
 - Standard protocol set (file, GridFTP, XrootD, http/webdav)
- Currently ~17.4 net PB of disk and ~21 PB of tapes
 - 1 tape library with 10000 slots (currently up to 85 PB capacity)
 - 5+3 PB of disk to be installed in Q3 2015
- Oracle Database services
 - Atlas calibration database and (near future) CDF databases for LTDP
 - Lemon. Grid-console. VOMS devel. (FTS)

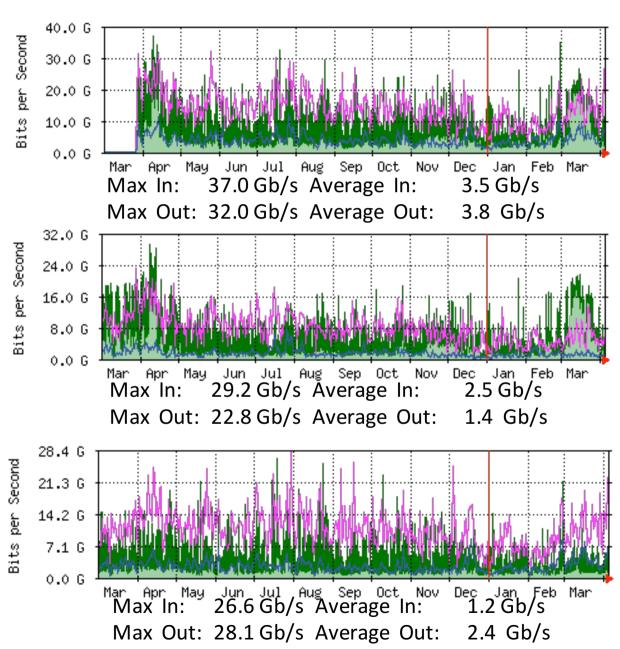



Storage model

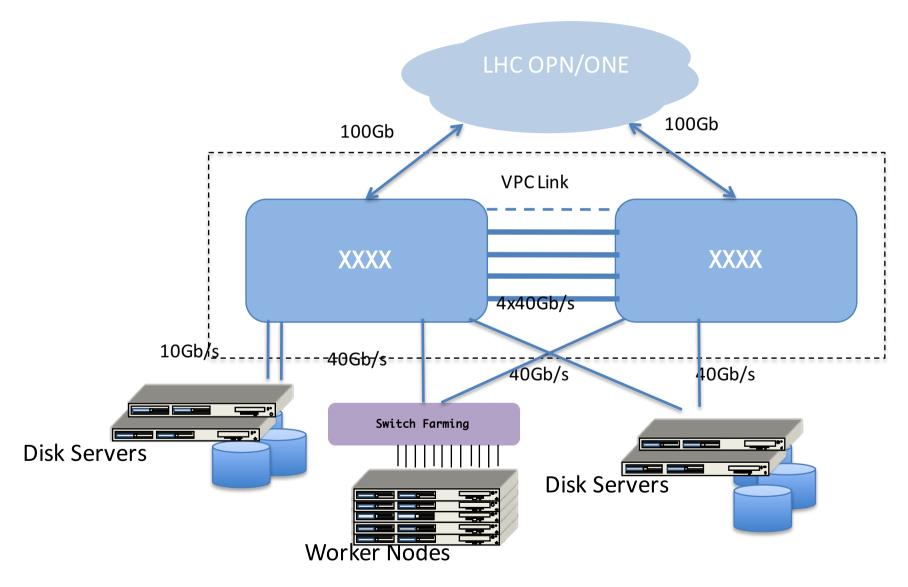
- GPFS as POSIX interface and back-end for all data management services
 - Flexibility in management
 - Failure resilience
 - Performance
- Storage accessed from 17k concurrent processes
 - With frequent configuration changes (new installations, data migrations) too
 - 5 MB/s/TB-N guaranteed
 - 5 MB/s bandwidth for each job
- Aggregated data bandwidth to storage ~ 80 GB/s
 - Peaks of ~ 20 GB/s on LAN
 - Some occasional saturation of LHCONE links (~ 4 GB/s)

Access to CMS file-system

Connectivity



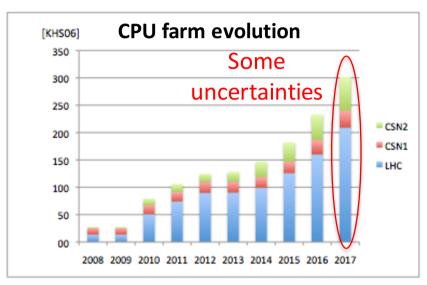
WAN utilization (last 12 months)

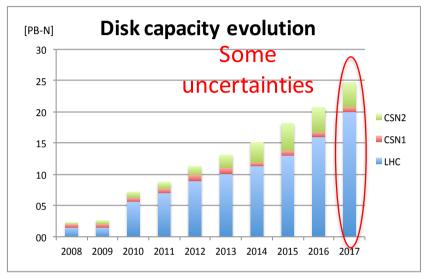

LHC OPN + ONE

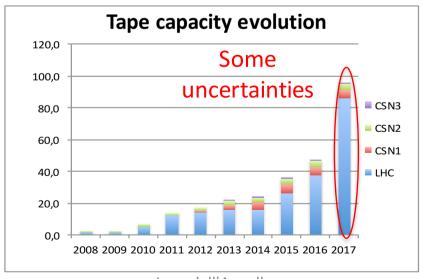
LHCOPN

LHC ONE

Network infrastructure Evolution



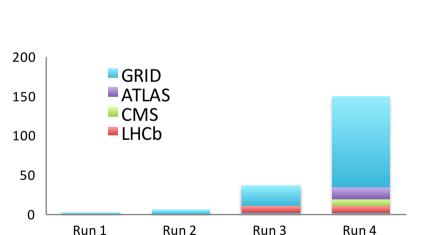



Long Term Data Preservation

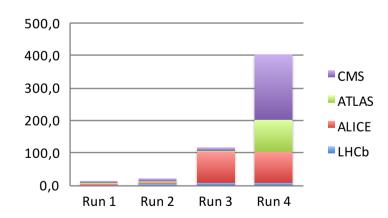
- LTPD activity for CDF is ongoing since 2013 in collaboration with Fermi Lab
- Two main areas of activity
 - Bit preservation
 - ~4 PB of data transferred and archived at CNAF (with a transfer rate up to 500 MB/s)
 - Automated system to perform regular checks of data integrity and copy back fro FNAL corrupted files is under development.
 - Preservation of code and analysis frameworks
 - instantiation on demand services and analysis computing resources on pre-packaged VMs
 - job submission to move from a dedicated portal (*Eurogrid*) to *jobsub*, to permit execution of legacy software on SL6 nodes.
 - The metadata, accessed directly at FNAL through Squid servers, will be copied to a local DB to ensure complete independence from FNAL.

LHC Run 2 Forecast

LHC Run 2


- Rapid growth of CPU and storage (disk/tape) driven by LHC
 - But a non-negligible increase of resources for Astro-Particle experiments in the following years foreseen (x4 according to some "rough" estimate)
- Hp.: CPU up to 300 kHS06, disk up to 27 PB-N and tape up to 100 PB
 - Δ CPU ~120 kHS06, Δ Disk ~10 PB-N, Δ tape ~80 PB
 - 2015 tender blades: ~19 kHS06/rack → 120 kHS06 ~ 6 racks
 - High density storage: at least 1 PB/rack → 10 PB-N ~ 10 racks
- Space: ~30 empty racks after 2015 resources installation
 - ~15-20 racks needed to add 2016-2017 resources
 - Space available for a new library if needed
- IT power can be increased up to ~1.2 MW with a safe (n+2) redundancy on the cooling system
 - Current IT load ~640 kW
 - The total IT load should remain under 1 MW

Data Center ready to host resources for LHC Run 2


Beyond Run 2?

- Huge increase of resources foreseen and our Data Center will be unlikely able to support it (budget issues not considered!)
- New technologies (e.g. GPU, low power processors)
- Data Center extension on remote sites?
- Data Center extension on Cloud?
 - Hybrid Cloud?

CPU requirements for online and offline processing

Raw data volumes estimations

Trends

Trends in HEP computing

- Distributed computing is here to stay
 - Actually we had it 30 years ago, and seriously 15-20 years ago
- □ Ideal general purpose computing (x86 + Linux may be close to the end
 - May be more effective to specialise
 - · GPU and other specialised farms
 - HPC machines
 - Commodity processors ("x86", ARM, etc)
 - Used for different purposes lose flexibility but may gain significantly in cost

rch 2015

Data centres

- Our Data Centres may become exactly that dedicated to data
- Compute resources are quite likely to be commercially available much cheaper
 - Don't know how they will be presented (hosted, cloud, xxx, ...)
 - Already see today commercial compute costs are comparable to our costs
- Not likely, or desirable, that we will give up ownership of our data
 - Will still need our large data facilities and support

23 March 2015

Ian Bird; FCC Week

Trends - Data centres

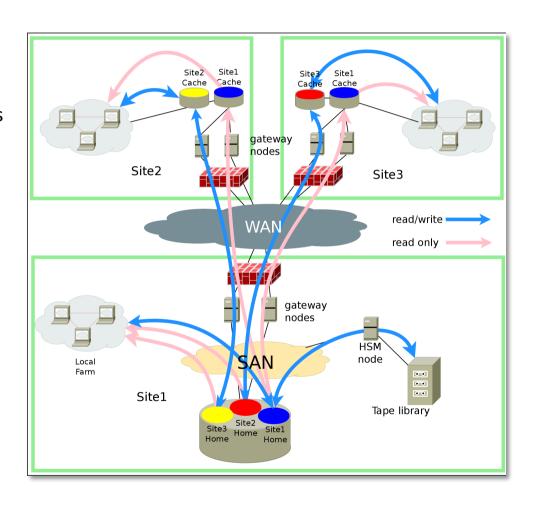
- Moving data around the world to 100's of sites is unnecessarily expensive
 - Much better to have large scale DC's (still distributed but O(10) not O(100)) – connected via v high bandwidth networks
 - Bulk processing capability should be located close or adjacent to these
 - Data access via the network but in a truly "cloud-like" way – don't move data out except the small data end-products

23 March 2015

Ian Bird; FCC Week

From Ian Bird's talk at WLCG workshop in Okinawa

Data Center extension and opportunistic use


- Remote Data Center Extension under study
 - Functionality tests ongoing with another site on GARR
 - Goal: transparent LSF extension
 - Also pilot setup for transparent remote storage access with AMS and theorists groups
 - GPFS extension based on a new feature
- Opportunistic use
 - Preliminary contacts on going also with one of the main Commercial Cloud Providers and with Unicredit Bank
 - Use of other centers (e.g. GARR, RECAS)?
 - Planning tests with CINECA for HPC system
- HNSciCloud PCP proposal, if approved, will lead to build an hybrid cloud pilot with Commercial providers
 - Hybrid infrastructure as a Service (IaaS) platform
 - 70% funded by EU
 - (If approved and successful!) much larger project in 2 years

INFN CNAF

Remote data access via GPFS AFM

Cache basics

- Asynchronous updates
- Writes can continue when the WAN is unavailable
- TCP/IP for communication between sites (NFS or GPFS protocol)
- Two sides
 - Home where the information lives
 - Cache
 - Data written to the cache is copied back to home as quickly as possible
 - Data is copied to the cache when requested
- Communication is done using NFS
- GPFS has it's own NFSv3 client
 - Automatic recovery in case of a communication failure
 - Parallel data transfers (even for a single file)
 - Transfers extended attributes and ACL's

HPC@CNAF

- (Small) HPC cluster also available
 - 24 nodes, 800 cores (~10 Tflops)
 - 17 GPUs
 - 3 Intel Xeon Phi

- ~20 TFlops (dbp)

- Nodes interconnected via Infiniband
- Operated with same tools as the generic farm
- Dedicated GPFS storage (70 TB-N)
- Pilot project started in Jan 2014, now in production phase
 - Cluster used at 80% on average, with a total of about 10k jobs.
- Main users: theoretical physics groups (particle acceleration and laser plasma acceleration simulations)
- Interest expressed also by Virgo, Atlas etc...

Summary

- INFN Tier-1 ready to host resources for LHC Run2
 - But also for the non LHC experiments
- Exploring and testing new technologies
 - HPC, low power processors...
 - ... but this is mainly driven by experiments' requirements and choices
- Exploring and starting to test data center extension on remote sites
 - Hybrid cloud?

Low power processors tests

- HP Moonshot with m350 cards and external storage
 - HP probed our WNs in order to determine the best storage solution
 - Providing us a dl380 as an iSCSI server
 - M300 cards with internal storage are too expensive according to HP
- Supermicro microblade
 - Each blade carries 4 motherboards and 4 discs, less compact but with built-in storage

What about Indigo?

- 1 FTE from DC dedicated to Indigo
 - Involvement from networking, farming and Data Management groups
 - 6 people in total
- Goal: to gain expertise on Cloud technology to improve service management and allow remote data center extension (e.g. CINECA, Aruba, PCP....)
- Program still to be detailed
 - Dynamic provisioning for Cloud
 - Virtualization & containers
 - Cloud storage

• • • • • •

The INFN Tier-1

- The Tier-1 is the main INFN computing centre providing computing and storage services to ~30 scientific collaborations
 - Tier-1 for LHC experiments (ATLAS, CMS, ALICE and LHCb)
 - Particle physics at accelerators
 - Kloe, LHCf, CDF, Agata, NA62, Belle2 (formerly also Babar and SuperB)
 - Astro and Space physics
 - ARGO (Tibet), AMS (Satellite), PAMELA (Satellite), MAGIC (Canary Islands), Auger (Argentina), Fermi/GLAST (Satellite)
 - Neutrino physics
 - Icarus, Borexino, Gerda, Opera, Cuore (Gran Sasso lab.)
 - <u>KM3NeT</u> (underwater)
 - Dark Matter search
 - Xenon, DarkSide (Gran Sasso lab.)
 - Gravitational waves physics
 - Virgo (EGO, Cascina)
 - Gamma Ray Observatory
 - CTA, LHAASO
 - LSPE and EUCLID in a near future?

Some other (r)evolutionary aspects

Behind the scenes:

- New provisioning system in place
- (Still) looking for alternatives to LSF
- Cloud and virtualization
- Rethinking monitoring system
 - Exploring solutions based on modular components (graphana etc...)

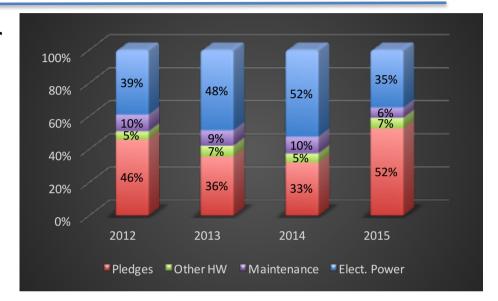
Network evolution

- New core
- 4x10 Gbps Disk-servers in next storage tender

See Andrea's slides

Pledge Co\$t

- In 2015 sharp increase of pledge costs due to storage (5 + 3 PB-N)
 - Phase-out of 2010 tender (5 PB-N)
- €/\$ rate exchange does not help either (- 20% since May 1 2014)
 - 2015 CPU tender ended with HS06 unit cost 15% higher than expected
- Disk most costly component
- In order to lower disk cost acquired entry-level class storage in 2014 tender
 - 2 PB-N in 4 systems
 - Good price but still to be verified robustness and resiliency (in production since Easter 2015)
 - New interesting feature (Distributed Raid) (see Vladimir's slides)



Other Co\$t\$

- Pledges cost accounts usually for less than 50%
 - Higher this year due to large disk tender
- Maintenance costs (6% in 2015)
 - Facility systems including cooling, dynamic UPS's....

- Non-pledge Hw (7% in 2015)
 - E.g. network components, library drives,....
- Important contribution comes from the electricity cost
 - ~2 ME (equivalent to 35%) estimated for 2015 (0.19 E/kWh)
- Room for improvement mostly from reducing IT load
 - Strong interest for low power processors (see Andrea's presentation)