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How can we built up 
a multidimensional picture 

of the nucleon?
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Lorcé, BP, Vanderhaeghen, JHEP05 (2011) 041
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Quark polarizationQuark polarization
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(16 complex functions)
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the distributions in red vanish if there is no quark orbital angular momentum 
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Key information from TMDs

•Spin-Spin and Spin-Orbit Correlations of partons

•Transverse momentum size

•Test what we can calculate with QCD (perturbative and lattice)

•Non-perturbative structure we cannot calculate with QCD

M. Boglione: TMD phenomenologyA. Bressan: TMDs in experiments M. Contalbrigo: 3D future



How to measure the TMDs
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How to measure the TMDs
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Fragmentation Functions



Gauge link dependence of TMDs
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Gauge link dependence of TMDs

SIDIS

Drell-Yan

Collins, PLB 536 (2002) 43

Sivers function SIDIS = − Sivers function Drell-Yan

Boer-Mulders function SIDIS = − Boer-Mulders function Drell-Yan

Strong QCD prediction. Needs to be tested.
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The unpolarized TMD f1

Transverse momentum

Fraction of 
longitudinal momentum

Correlation between x and k⊥:

widening of the distribution at lower x



The unpolarized TMD f1

Transverse momentum

Fraction of 
longitudinal momentum

Correlation between x and k⊥:

widening of the distribution at lower x

We know the integrated PDF very well.
We know the TMD still poorly.



Flavor structure of TMDs: indications from lattice 
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FIG. 15: Flavor-ratios at a pion mass m� � 500MeV. The
solid curve and the statistical error band in blue have been
obtained from the Gaussian fits displayed in Fig. 12 and
13. The corresponding errors associated with �[�m] are
shown as a gray band at the bottom. For the dashed curve
and the band in orange we have used alternative Gaussian
parametrizations as discussed in section VE. The respective
uncertainties from �[�m] are shown at the top of each plot.
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where the first and the second index of ⌅ indicates the
nucleon and quark polarization, respectively.
From the x-moments of amplitudes ⌃Ai obtained on the

lattice, we can construct x-integrated densities ⌅[1]q , and
decompose them in analogy to Eq. (40) as

⌅[1]q (k⇥;⇤, s⇥,⇥,S⇥)

⌅
⇧ 1

�1
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dx ⌅q̄(x,�k⇥;�⇤, s⇥,⇥,S⇥) . (57)

where the anti-quark density ⌅q̄ is defined as in Eq. (49)
but using the correlator ⇤c

q of Eq. (E1) in the appendix.
Here the appearance of minus signs in front of ⌅q̄ and
⇤ accommodates the sign changes in the Dirac matrix �
after charge conjugation, i.e., �c = � 1

2 (�
+ � ⇤�+�5 �

sji⇧+j�5). We conclude that the x-integrated densities

⌅[1]q are di⌅erences of quark densities ⌅q and anti-quark
densities ⌅q̄ of

• opposite transverse momentum �k⇥,

• opposite light cone helicity �⇤,

• same transverse polarization s⇥.

Strictly speaking, the densities that are integrated over
x from �1 to +1 are thus not densities themselves and
can, at least in principle, become negative.
With the Gaussian x-moments of TMDs from Table

IV as input, we are in a position to draw plots of the
x-integrated transverse momentum dependent densities
of quarks in the nucleon. Two particularly interesting
and statistically well-determined x-integrated densities

are ⌅[1]LT and ⌅[1]TL. They feature significant dipole defor-
mations due to correlations in the transverse spins and
intrinsic transverse momentum, as can be seen from the
terms proportional to g1T and h⇥

1L in Eqns. (54) and (55),
in combination with our non-zero results for the relevant
amplitudes ⌃A7 and ⌃A10, see Eq. (16). For corresponding
density plots and their interpretation, we refer to our pre-
vious publication Ref. [32]. The dipole deformations can
be characterized by average transverse momentum shifts
of the quarks, denoted by ⇧kx⌃TL and ⇧kx⌃LT . These are
defined by ratios of specific moments in x- and k⇥ of the
densities, as we will discuss in the following section.

Musch, Hagler, Negele, Schaefer, PRD83 (2011) 094507

Pioneering lattice-QCD studies hint at a 
down distribution being wider than up

“less” up quarks
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Flavor structure of TMDs: indications from data
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Ratio width of down valence/
width of up valence

Signori, Bacchetta, Radici, Schnell, JHEP 1311 (13)

talk of M. Boglione

fit to SIDIS multiplicities from HERMES:  



Adding the spin

correlation between x and k⊥

correlation between x, k⊥ and spin



Sivers function
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f�1T =

non-zero ONLY with final-state interaction

the helicity mismatch requires orbital angular momentum

unpolarized quarks in     pol. nucleon⊥

f?
1T |SIDIS = �f?

1T |DY



hermes

EIC

Paste, present and future TMD measurements

Accardi et al., The Electron Ion Collider: the next QCD Frontier
arXiv:1212.1701

talks of A. Bressan, M. Boglione and M. Contalbrigo

Gluons Sea quarks Valence quarks
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polarization

deformation induced by Sivers function 

Bacchetta & Contalbrigo,  The proton in 3D 
Il Nuovo Saggiatore 28 (12) n.1,2

distribution of unpolarized q in ⊥ polarized p↑ 



Key information from GPDs

• Transverse position size

•Decomposition of Form Factors w.r.t. x

•Sum rule for Angular Momentum 

•Access to Form Factors of Energy Momentum Tensor

 “mechanical” properties of the nucleon

M. Guidal: GPD phenomenologyS. Pisano: GPDs in experiments M. Contalbrigo: 3D future



How to measure the GPDs

‣accessible in exclusive reactions

‣factorization for large Q2,  |t|<< Q2 , W2

‣depend on 3 variables: x, ⇠, t

Compton Form Factors



Paste, present and future DVCS experiments

Gluons Sea quarks Valence quarks

Accardi et al., The Electron Ion Collider: the next QCD Frontier
arXiv:1212.1701

hermes

EIC
See talks of S. Pisano, M. Guidal, M. Contalbrigo



The unpolarized GPD H

⊥

Lattice results
Negele et al., NPB Proc. Suppl. 128 (2004) 170

From experimental data
Guidal et al., Rep. Prog. Phys. 76 (2013) 066202

As x      1, the active parton carries all the momentum 
 and represents the centre of momentum

H(x, 0,~b?) =

Z
d2�? H(x, 0, t) e�i~�?·~b?

t = �~�2
?

extrapolation from data



Unpolarized quarks in transversely pol. nucleon
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GPD E
“Helicity mismatch” requires 
orbital angular momentum

unpolarized quarks 
in ⊥ pol. nucleon

 “partner” of Sivers function

•no-forward limit to PDF

F2(t) =

Z
dxE(x, ⇠, t)• 



Unpolarized quarks in transversely pol. nucleon
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GPD E
“Helicity mismatch” requires 
orbital angular momentum

Lattice calculation

Goeckeler et al., Phys. Rev. Lett. 98 (2007) 222001

Transverse 
dipole moment:

quark contribution to 
proton anomalous 
magnetic moment

unpolarized quarks 
in ⊥ pol. nucleon

 “partner” of Sivers function

•no-forward limit to PDF

F2(t) =

Z
dxE(x, ⇠, t)• 



Model relation TMD        GPD

Burkardt, PRD 66 (2002) 114005

unpolarized quark in unpolarized nucleon



Model relation TMD        GPD

Burkardt, PRD 66 (2002) 114005

Distortion in impact parameter
(related to GPD E) 

unpolarized quark in transversely pol. nucleon

⦿



Model relation TMD        GPD

Burkardt, PRD 66 (2002) 114005

Distortion in transverse momentum
(related to Sivers function) 

Final-state interaction
(lensing function)

⦿



Model relation TMD        GPD

Burkardt, PRD 66 (2002) 114005

Distortion in transverse momentum
(related to Sivers function) 

Final-state interaction
(lensing function)

⦿

9

The derivative in (66) can now act either on the quark
fields or on the Wilson lines. In the first case though,
one gets no contribution to the average transverse mo-
mentum, since the involved combination of Wilson lines
vanishes,
[

W+∞
(

− 1
2z; 1

2z
)

−W−∞
(

− 1
2z; 1

2z
)
] ∣
∣
∣z+=0+

!zT =!0T

= 0 . (67)

The result (67) is obvious because both Wilson lines are
just running along the light-cone.

On the other hand, if the derivative acts on the Wilson
lines, one finds

i ∂i
T

[
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∣
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, (68)

where the paths of the remaining Wilson lines run along
the light-cone and the function Iq,i is defined by

Iq,i
(

1
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=
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2
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. (69)

Plugging the results together one arrives at the following
expression for the average transverse momentum,

〈

kq,i
T (x)

〉

UT

=
1

2

∫
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2π
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.(70)

Equation (70) is a representation of the average trans-
verse momentum in terms of a specific quark-gluon-quark
light-cone correlator [36, 52, 64]. Since the gluon field in
the three-parton correlator in (70) has zero longitudinal
momentum one often talks about a soft gluon matrix el-
ement. The reader is referred to [65, 66, 67, 68] where
such (or similar) matrix elements were first discussed in
connection with transverse SSAs.

To unravel a possible connection between the Sivers
effect and the GPD Eq, in Ref. [36] the RHS of (70)
was transformed to the impact parameter space, where
it takes the form

〈
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2
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〉

, (71)

with z1/2 as given in Eq. (36). Comparing the expression
in (71) with the correlator (34) for the quark GPDs in

impact parameter space (for Γ = γ+) one realizes that
the only difference is the additional factor Iq,i and an
integration upon the impact parameter #bT [36]. On the
basis of this observation one may hope to find a relation
of the type

〈

kq,i
T (x)

〉

UT
=

∫

d2#kT ki
T Φq(x,#kT ; S)

#
∫

d2#bT Iq,i(x,#bT )Fq(x,#bT ; S) , (72)

where, in rough terms, the function Iq,i incorporates the
effect of the gluon field in the correlator on the RHS
of (70). We mention that in the second term on the RHS
of (72) only the spin-dependent term of Fq contributes.

Expressed in terms of TMDs and GPDs Eq. (72) reads
〈

kq,i
T (x)

〉

UT

= −
∫

d2#kT ki
T

εjk
T kj

T Sk
T

M
f⊥q
1T (x,#k 2

T )

#
∫

d2#bT Iq,i(x,#bT )
εjk
T bj

T Sk
T

M

(

Eq(x,#b 2
T )

)′

. (73)

Interestingly, the relation (73) is indeed fulfilled in
the context of perturbative low order model calcula-
tions [37] (see also Sec. IV). It also provides an intu-
itive understanding of the origin of the Sivers transverse
SSA [35, 36]. However, Eq. (73) does not have the sta-
tus of a general, model-independent result (see also, e.g.,
Ref. [69]). The crucial problem lies in the fact that, in
general, the average transverse momentum

〈

kq,i
T (x)

〉

UT
caused by the Sivers effect cannot be factorized into the
function Iq,i (called lensing function in [36]) and the dis-
tortion of the impact parameter distribution of quarks
in a transversely polarized target which is determined by
(Eq)′.

C. Generalization of relations

To get further insight into possible relations between
GPDs and TMDs, which at least may hold in the context
of model calculations, we now follow a procedure given
in Ref. [38]. The equations defining the GPDs in impact
parameter space [see Eqs. (38)–(41)] on the one hand
and the TMDs [see Eqs. (48)–(50) and (52)–(54)] on the
other obviously have a corresponding structure if one in-
terchanges the impact parameter #bT and the transverse
momentum #kT . Comparing these equations one directly
finds out which functions may be related. However, using
this procedure one cannot extract the precise form of the
relations. Note also that the two TMDs g1T and h⊥

1L have
no counterpart on the GPD side, as already pointed out
in Sec. II C. In the following we, respectively, talk about
relations of first, second, third, and fourth type, depend-
ing on the number of derivatives of the involved GPDs
in impact parameter space. In the case of quark distri-
butions the results given in this subsection were already
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The derivative in (66) can now act either on the quark
fields or on the Wilson lines. In the first case though,
one gets no contribution to the average transverse mo-
mentum, since the involved combination of Wilson lines
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The result (67) is obvious because both Wilson lines are
just running along the light-cone.
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where the paths of the remaining Wilson lines run along
the light-cone and the function Iq,i is defined by
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Plugging the results together one arrives at the following
expression for the average transverse momentum,
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Equation (70) is a representation of the average trans-
verse momentum in terms of a specific quark-gluon-quark
light-cone correlator [36, 52, 64]. Since the gluon field in
the three-parton correlator in (70) has zero longitudinal
momentum one often talks about a soft gluon matrix el-
ement. The reader is referred to [65, 66, 67, 68] where
such (or similar) matrix elements were first discussed in
connection with transverse SSAs.

To unravel a possible connection between the Sivers
effect and the GPD Eq, in Ref. [36] the RHS of (70)
was transformed to the impact parameter space, where
it takes the form
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with z1/2 as given in Eq. (36). Comparing the expression
in (71) with the correlator (34) for the quark GPDs in

impact parameter space (for Γ = γ+) one realizes that
the only difference is the additional factor Iq,i and an
integration upon the impact parameter #bT [36]. On the
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Different definitions of OAM

Lq Sq

SgLg

Lq Sq

Jg

Ji’s sum rule Jaffe-Manohar

 Lorcé, Leader, Phys. Rep. 541 (2014) 163 

• Each term is gauge invariant
• Accessible in DIS and DVCS
• Can be calculated in Lattice QCD

Pros: Pros:

• Satisfies canonical relations
• Complete decomposition

(      and       measured by 
 COMPASS, HERMES , RHIC)

Cons:

• Gauge-variant decomposition
• Missing observables for the OAM

Improvements:

• OAM accessible via Wigner distributions    
  and it can be calculated on the lattice

Cons:

• No decomposition of Jg
   in spin and orbital part

• Does not satisfy canonical commutation relations

Jg = Lg +�g

Improvements:

• Complete decomposition
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The blind men and the elephant

TMDs and GPDs provide different and complementary information
and need to talk to each other 

to reconstruct the full 3D picture of the nucleon

from H. Avakian
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