

- Instrumentation and Coordination Committee
- The MUTANT system
- The GTS system

<u>Instrumentation and Coordination Committee</u> <u>Electronics Working Group members</u>

Gilles Wittwer wittwer@ganil.fr

Michel TRIPON tripon@ganil.fr

Abderrhaman BOUJRAD boujrad@ganil.fr

Frank Salomon d'Orsay salomon@ipno.in2p3.fr , Maurizio Bini de Florence bini@fi.infn.it

Didier BAUMEL beaumel@ipno.in2p3.fr

Vicente Gonzalez Millan. vicente.gonzalez@uv.es

Stefano Panebianco stefano.panebianco@cea.fr

Adam CZERMAK <u>adam.czermak@ifj.edu.pl</u>

Nabil Karkour Nabil.Karkour@csnsm.in2p3.fr

ICCEWG overview

- MOTIVATIONS:

To find out and to develop synergies in hardware, firmware and embedded software fields for the instrumentation of the SPIRAL2 future detectors

- MEETINGS:

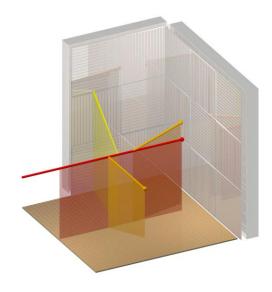
- 9 meetings since 2009
- 3 meetings about trigger and synchronization systems: CENTRUM, TDR, BUTIS, MUTANT, GTS
- ICCEWG technical report and recommendations (January 2012)
- 1. ICCEWG advises the designers to incorporate the MFM data format.
- 2. ICCEWG recommends the GTS and the MUTANT systems which will be deployed at GANIL for coupling detector instrumentations.
- **3. Designers can implement interfaces to the GTS or MUTANT system**, from the simple trigger less system (clock and synchronization) to the full system with all the trigger facilities.

MUTANT

On behalf of G.F.GRINYER and G. WITTWER

- -This Synchronization and Trigger system has been developed in the framework of GET instrumentation
- GET electronics instruments the ACTAR TPC detector

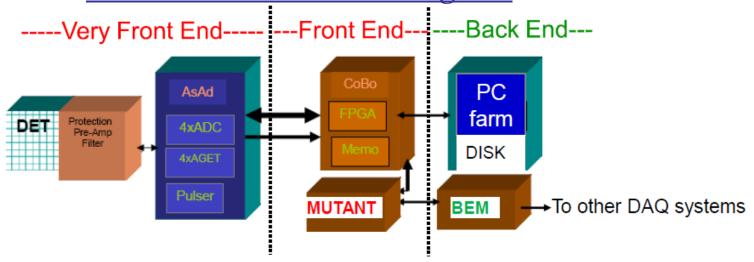
ACTAR TPC detector


Demonstrator:

- 2048 channels

In-beam test @ GANIL Campaign @ IPN Orsay in 2015

Final Detector


- 16384 channels in 2016

MUTANT

AGET: Asic for GET – 64 analog channels - 512 cells/channel

IRFU

ASAD: ASic and Analog to Digital converter - 4 AGET + 4 ch. ADC

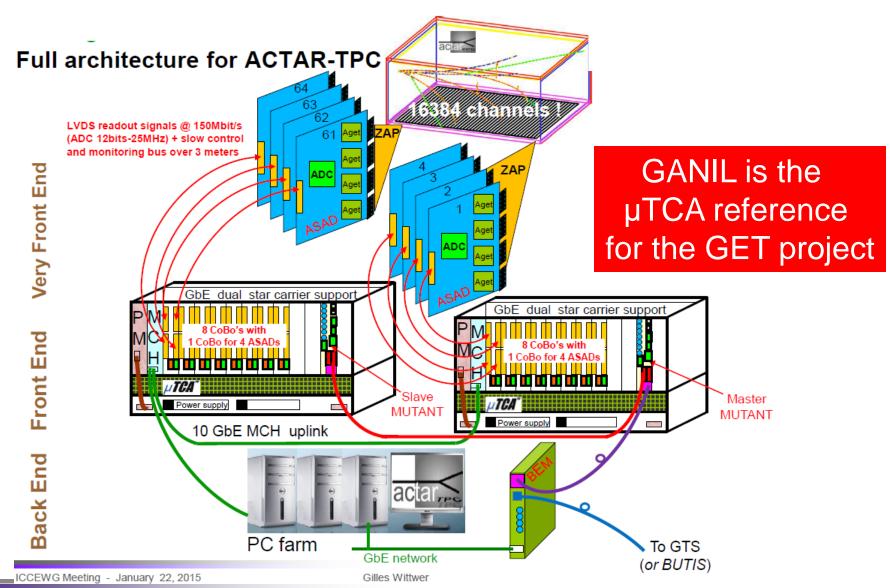
CENBG

COBO: COncentration BOard – 4 ASAD - 1024 digital channels

NSCL/MSU

MUTANT: MUtiplicity, Trigger ANd Time (3 trigger levels)

BEM: Back End Module (coupling, remote inspections, ...)



collaboration based on an "ANR" grant for the French labs (2009-2014)

ASAD, COBO and MUTANT integration

ASAD

MUTANT, COBO

MUTANT functionalities

Among the main tasks of MUTanT

Distribution of a 100 MHz clock (GMC) to every CoBo of each crate, phase aligned (skew< 1ns - TDC) ⇒ µTCA-CLK1

Distribution of a synchronous start/stop sampling (phase aligned) (WSCA)⇒ µTCA-CLK2

Exchanging data in parallel with the CoBo @ 800 Mbit/s (TX/RX) with its own shelf and slave shelves

Building the whole TPC Digital multiplicity:

- Master MUTANT + slave MUTANT
- Each MUTANT with the CoBo boards every 40 ns

implemented on board A

- 3 Trigger levels:
 - -LØ= External Trigger
 - -L1 = Multiplicity Trigger
 - -L2 = Hit Pattern Trigger

Time stamp:

- 48 bits / 10 ns
- CDT/autonomous mode
- 32 bit event number (CDT)
- local/remote (via BEM)

is the good example to validate all these aspects!

ICCEWG Meeting - January 22, 2015

Gilles Wittwer

MUTANT

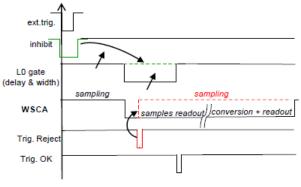
Trigger modes for level 0 and 1

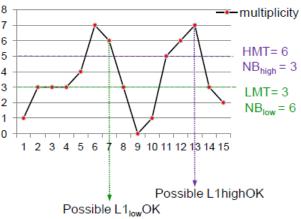
L0: external trigger attached to a programmable gate & delay with reject and inhibit options

L1: Time over multiplicity threshold with:

- 2 sets of Multiplicity Threshold/Number of Buckets (HighMT/NB_{high} and LowMT/NB_{low)}
- Logical combination of L1 $_{\rm low}{\rm OK}$ and L1 $_{\rm high}{\rm OK}$ for the final L1 OK:

 $L1OK = L1_{low}OK$

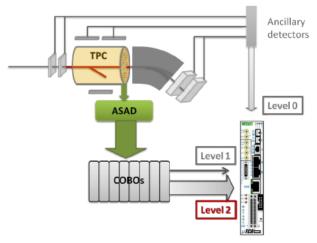

 $L10K = L1_{high}OK$

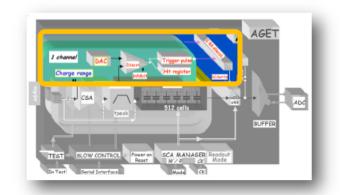

 $L1OK = L1_{low}OK \text{ or } L1_{high}OK$

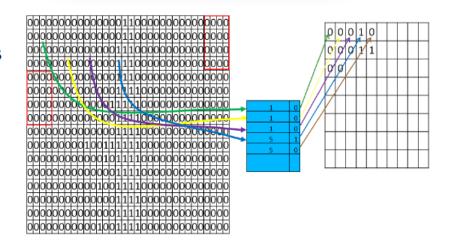
 $L1OK = L1_{low}OK$ and $L1_{high}OK$

 2 proton decay mode with 2 successive L1 cycles
 L1 OK for implantation followed or not by a L1 OK for decay (with timeout and Half Event Readout option)

L0/L1: Coincidence of L1 OK with L0 gate triggered externally or L1 OK starts L0 gate (with delay and width) waiting for an external validation.

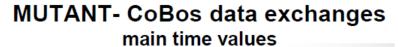




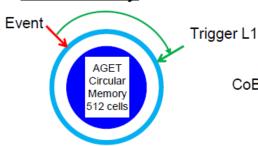

MUTANT

Trigger modes for level 2

- Global hit pattern from all pads
- Comparison: possibilities of using "macropads" with thresholds 4×4, 8×8, 16×16
- Mask pattern option
- Decision and readout



ICCEWG Meeting - January 22, 2015


Gilles Wittwer

MUTANT

AGET: Sampling Frequency = 1-100 MHz Trigger roundtrip: $512 \times 10 \text{ ns} = 5.12 \mu \text{s}$ Full memory to 512 x $1\mu s = 512 \mu s$

MUTANT Programmable Delay & Gates are 16 bits wide Attached to GMC (10 ns)

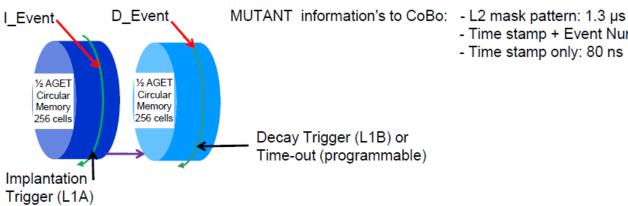
CoBo to MUTANT: L1: new multiplicity value @ 25 MHz max

nothing to do @ MUTANT level for lower frequency

- Time stamp only: 80 ns

L2: 1.3µs to receive the TPC hit pattern (one shelf)

12.8 µs for added shelves


MUTANT trigger "OK" to CoBo "STOP": -LØ: 30 ns/655 µs max

- L1 : 80 ns /655 µs max

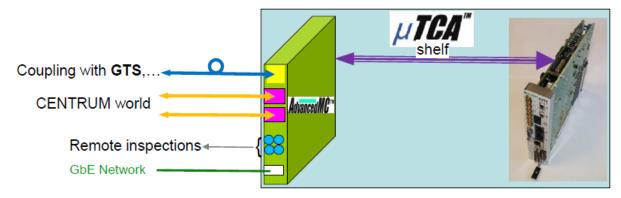
- Time stamp + Event Number: 120 ns

- L2 : depends on the algorithm!

2 x half-memories (2p decay)

ICCEWG Meeting - January 22, 2015

Gilles Wittwer


MUTANT

3-Coupling:

About Back End Module (BEM) design

ACTAR-TPC with MUTANT: Ready today for coupling @ GANIL with CENTRUM interface!

But tomorrow with SPIRAL2 instrumentations, or when ACTAR-TPC will move to other laboratories?

Goal: Be able to synchronize ACTAR-TPC DAQ (Clock & Time stamp) by an external system or using the ACTAR-TPC DAQ as reference if ancillary detectors are added to the TPC

Work to do: Writing specifications in mid 2015, and starting design after summer 2015

MUTANT

Scheduled

- μTCA configuration validation (CoBos + MUTANT) early 2015
- ➤ MUTANT mass production during 2015 (2 batches)

First users through the world (with new TPC, Si detectors,...)

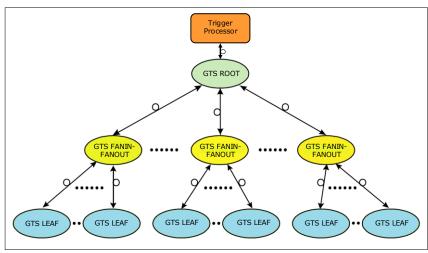
Planned

Global Trigger and Synchronisation system

Foreword:

- ❖ The GTS has been chosen by GANIL for the instrumentation of the EXOGAM detector
- ❖The GTS has been retrieved from the instrumentation of AGATA, the European Ge Advanced GAmma Tracking Array detector.
- ❖The GTS was designed by the INFN Padova laboratory.

GTS components:


- ❖Tree topology
- ❖ Hardware: GTS V3 custom mezzanines, COTS Xpress Gen2V5 Trigger Processor, Optical links, Local Ethernet network
- ❖ Firmware: GTS V3 set up as either ROOT, either FANIN-FANOUT, either LEAF
- ❖Software: Embedded software in VxWorks environment, GTS command server

GTS functions:

- ❖Synchronization and trigger signals are issued from **optically broadcasted messages** between the digitizers (attached to the GTS LEAVES) and the Trigger Processor. In these messages at **2 Gb/s** speed, the **GTS**:
 - 1. drives the recovered 100 MHz common clock
 - 2. sources the time stamp (48 bits, 10ns resolution)
 - 3. broadcasts trigger decisions

XpressGen2V5 Trigger Processor

GTS V3 mezzanine



Global Trigger and Synchronisation system

GTS V3 housed in carriers

GTS V3 on VME board

4 GTS V3 housed in 2/12 NIM module

1 GTS V3 housed In ATCA processing card

Global Trigger and Synchronisation system

Coupling ancillary detector to the GTS

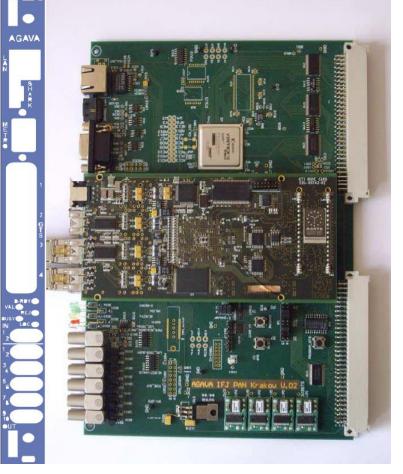
Ethernet link to GST mezzanine

connectors to TDR

GTS optical clock lines

control LEDs:

DATA-ready, Val., Rej., busy, Loc_Trig.

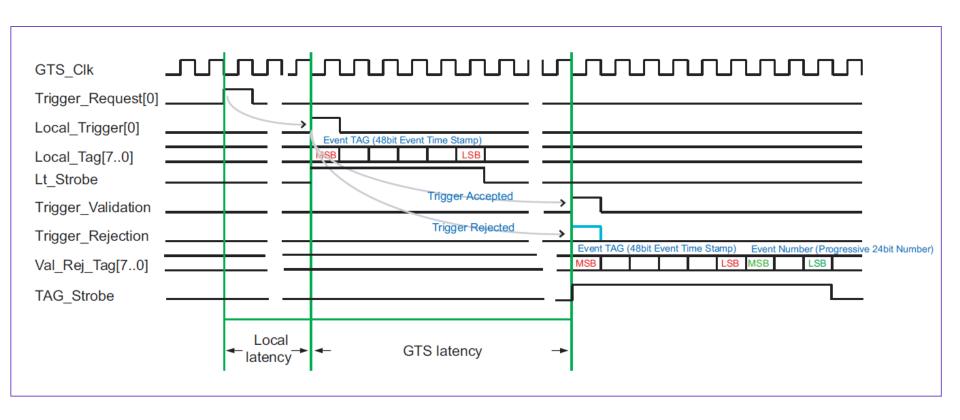

Input signals:

back pressure, Trig. request

fixed inspection lines:

- · Loc_trig., Rej., Val.
- · busy, timeout

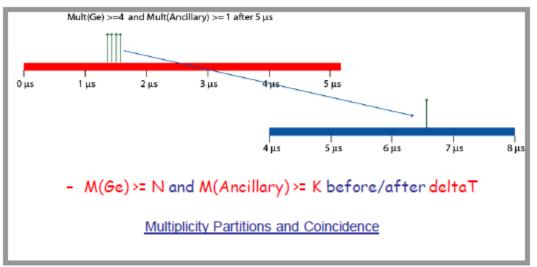
programmable inspection lines

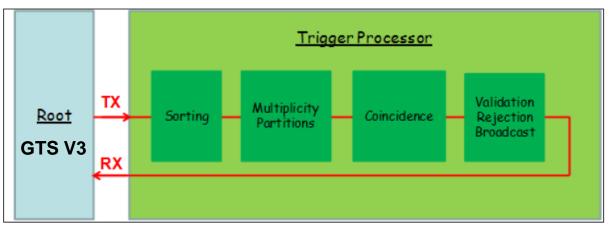


AGAVA and GTS V3 mezzanine

Global Trigger and Synchronisation system

Current GTS cycle



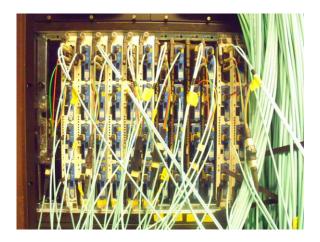

GTS clock period = 10ns; Local Latency = 10ns; GTS latency > 10µs

Global Trigger and Synchronisation system

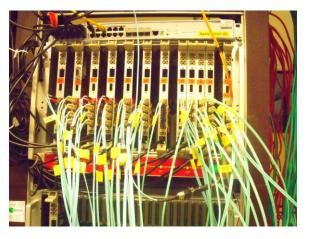
Current GTS Trigger Processor

I AM LA

XpressGen2V5 Trigger Processor


Trigger Processor VHDL code is implemented in the Virtex 5 FX200 of the XpressGen2V5 PCI board

Trigger Processor sketch (simplified)


Global Trigger and Synchronisation system

AGATA GTS tree

GTS V3 mezzanines housed in ATCA cards

LEAF

GTS V3 mezzanines housed in VME carriers
FIFOs and ROOT

AGATA demonstrator: 25 Ge Crystals

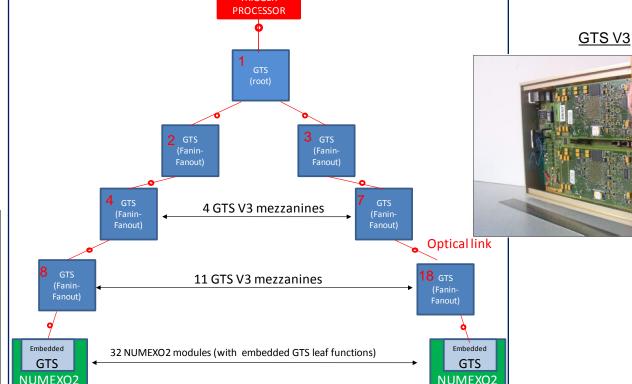
25 core Ge channels => GTS tree features 38 GTS V3 mezzanines:

(25 GTS V3 leaves, 12 FIFOs, 1 ROOT)

AGATA full setup: 180 Ge Crystals

180 core Ge channels => GTS tree features 271 GTS V3 mezzanines:

(180 GTS V3 leaves, 90 FIFOs, 1 ROOT)



Global Trigger and Synchronisation system

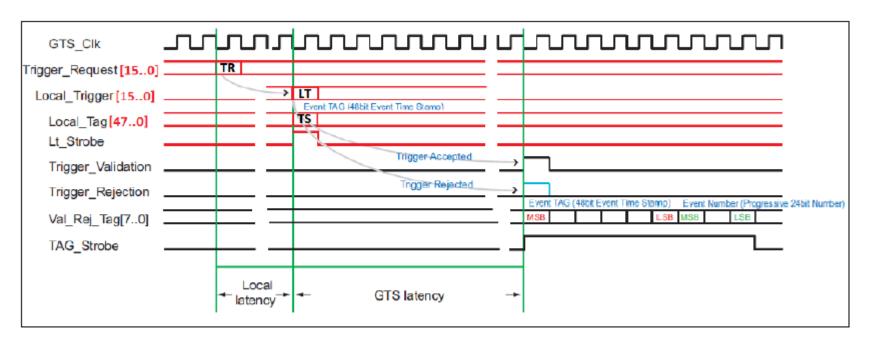
EXOGAM GTS tree (full setup)

- 32 GTS leaves embedded in 32 NUMEXO2 digitizer
- 18 GTSV3 FanIn-FanOut
- 1 GTS V3 root
- 1 GTS Trigger Processor (under development)

NUMEXO2

Global Trigger and Synchronisation system

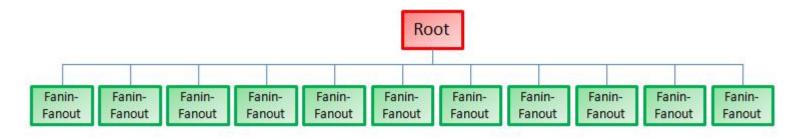
Drawbacks of the current GTS

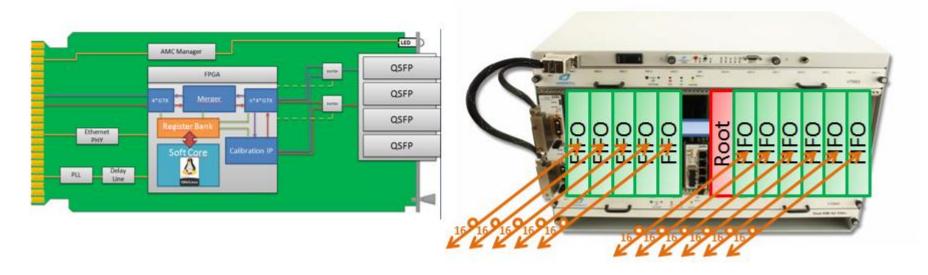

- 1) One Trigger Request (detector channel discriminator) per optical link to the GTS tree=> EXOGAM2 requirements : 2 TR per optical link
- 2) Number of GTS V3 cards in the GTS tree < 255.
 - => Number of GTS leaves in the current GTS tree < 170
- 3) Total number of TR (detector channel label) < 255
 - => EXOGAM2 requirements: 64 TR
 - => NEDA requirements : > 300 TR
- 4) Total number of TR handled by the current trigger processor < 40 TR
 - => EXOGAM2 requirements: 64 TR

Global Trigger and Synchronisation system

GTS upgrade Point 1: 16 TR per GTS leaf connection to the tree

=> GTS leaf firmware, implemented 16 TR per leaf, was successfully NUMEXO2 digitizer leaf

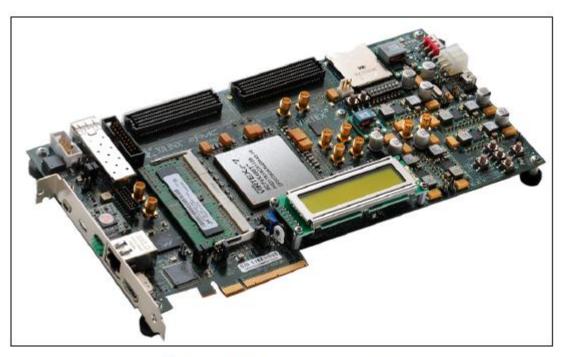

NUMEXO2 GTS cycle



Global Trigger and Synchronisation system

GTS upgrade Points 2 and 3: more than 255 TR in the GTS tree

=> GANIL proposal for a GTS tree migration towards the μTCA



Global Trigger and Synchronisation system

GTS upgrade Point 4: more than 40 TR handled by the Trigger Processor

- ⇒ Firmware development ongoing in Virtex 7
- ⇒ TP hardware = Xilinx VC707 housed in custom box

Xilinx VC707 development kit