

FBK silicon radiation detectors An overview

Nicola Zorzi

on behalf of the radiation detectors team

GASPARD-HYDE-TRACE Workshop 2015 - 25-27 March 2015

FBK Organization

FBK — CMM

Centre for Materials and Microsystems (http://cmm.fbk.eu/)

Silicon Devices Expertise

TCAD simulation CAD design

Device testing

Material Characterisation

- XPS
- SIMS
- ToF-SIMS
- TXRF
- AFM
- SEM

Development of ROIC by exploiting state of the art CMOS tech (external services)

Custom CMOS design

4

Micro Nano Facility

2 separate clean rooms:

- CR Detectors
 500 m² in class 10 and 100
- CR MEMS
 200 m² in Class 100 and 1000

Equipments:

- Lithography
- Diffusion
- Implantation
- Dry Etching
- Wet Etching
- Control Area

6" wafers processing capability starting by 2013

Test Laboratories

- Manual probers
- Automatic probers
- Parametric Test
- Functional Test
- Optical Test

Microsystems Integration Lab

- Microassembly
- Bonding
- Micromilling/Drilling
- Screen printing

Silicon Radiation Detectors

Sensors on highresistivity substrates

- pixel detectors
- strip detectors
- drift detectors
- 3D detectors

Sensors with internal gain for light detection

- Silicon Photomultipliers
- SPADs

- Custom design
- Technology development
- Device manufacturing (small/medium production capability)

Strip detectors: medium-scale productions

AMS experiment (@ISS)

Silicon microstrip detectors:

700 <u>large-area</u> <u>double-sided</u> in spec detectors fabricated in 2002-2004.

ALICE experiment (@LHC)

Silicon microstrip detectors:

600 <u>large-area</u> <u>double-sided</u> in spec detectors fabricated in 2003-2005. ALICE Industrial Awards in 2006

Strip detectors: custom productions

Custom development of strip detectors for private companies and research institutions:

- single/double-side,
- DC/AC coupled,
- punch-through biasing,
- very low leakage,
- high yield

Strip detectors: large area on 6"

Development of strip detectors for CSES/Limadou project: China Seismo-Electromagnetic Satellite

CNSA/ASI/INFN collaboration

- ~ 11x7.8cm2 strip detector:
- double-side,
- AC coupled,
- punch-through biasing,
- orthogonal strips

Custom Pad detectors: examples (4")

Segmented PAD detectors for TRACE

- 12x5 array, 4mm pitch
- AC coupling, punch-through biasing
- 1.5mm and 0.2mm thick substrates

Thick-substrates require non-standard processing and equipment-settings Starting material quality play a key role

Large area PADs for FAZIA

- 2x2cm² active area,
- NTD substrates with peculiar orientation
- 0.3mm and 0.5mm thicknesses
- double-side dedicated process
- two (thick/thin) metal layers

Different production cycles for the development of the proper technology

Procurement of non-standard substrates more difficult for 6"

FBK 3D technology

Original Double side

fabrication process

- junction columns etched from front
- ohmic columns etched from back
- empty columns (~11µm diam.)
- passing-through columns (230µm)
- p-type FZ wafer with p-spray isolation

Latest Technology developments

- both column-types etched from front (single-side, thin substrates with support)
- partial column filling with poly-Si
- partial etching of junction columns
- From 4" to 6"

3D detectors for ATLAS-IBL up-grade

- Insertable B-Layer based on hybrid pixels/FEI4 (~2x1.8cm²)
- IBL installed in ATLAS during current LHC shutdown
- ~25% of pixel sensors for ATLAS-IBL are 3D (from CNM & FBK)

3D sensors for the 1st time in an exp

Common wafer layout of ATLAS/3D collaboration (8 FEI4 sensors, 4")

Total leakage current measured at:

- wafer level
- after bump-bonding to FEI4 chip

Tracking efficiency map at normal incidence for an un-irradiated detector at 20V (after bump-bonding to the FEI4 chip)

Active-Edge (Edgeless) detectors

FBK Active edge: example (4")

- ~5µm wide trench
- 100-200µm deep (depending on the depth of active substrate)
- poly-Si filled (walls doping and planarization for further process steps)

Silicon pixel sensors produced using:

- 200µm-thick FZ substrates, oxide-bonded to CZ support wafer
- 100µm-thick epi layer on thick substrates

Si-Si direct bonded wafers (FZ-on-CZ) under evaluation (planar process)

Active edge results (epi substrate)

Lateral dead layer can be kept at few 10µm

Silicon Drift Detectors (SDDs)

- Very tiny collecting electrode \rightarrow low capacitance (low noise)
- ~10-100mm² active area (single central anode, "circular" symmetry)

Applications: • γ- and X-ray spectroscopy (with or w/o scintillator)

Multi-anodes Linear SDDs

- array of collecting electrodes (anodes) \rightarrow 1D spatial information
- ~100cm² active area
- for large devices an effective drift field requires patterning of both sides
- drift time gives additional 1D spatial information

Applications:

2D position sensitive detectors (use of drift time)
tracking, X -ray spectroscopy

SDD: ESA project ESA/PoliMI/INFN-MI

4" wafers

3X3 SDD matrices

- γ-ray detector
- LaBr₃:Ce scintillator (1" to 3" Ø)
- optical entrance window for ~370nm light

 57 Co, 137 Cs, 60 Co spectra measured with the SDD array coupled to a 1" LaBr $_3$ crystal

presented at IEEE NSS-MIC 2012

T=: -20°C peaking time: 6 μs

SDD: SIDDHARTA INFN-Frascati/PoliMI

(Silicon Drift Detector for Hadronic Atom Research by Timing Application)

Almost same technology as of ESA, but 6"

First 6" production recently finished

SDD: ReDSoX/LOFT project Research Drift for Soft X-rays INFN/INAF

- development of large area Silicon Drift Detectors for X-ray astrophysics
- development of high energy resolution detectors for soft X-rays
- development of detectors for Advanced Light Sources
- improvement of the SDD technology

Large area linear drift detector for LOFT (Large Observatory For X-ray Timing)

- ~12x7.2cm² active area;
- Double side drift structure

SDD: ReDSoX project

- development of large area Silicon Drift Detectors for X-ray astrophysics
- development of high energy resolution detectors for soft X-rays
- development of detectors for Advanced Light Sources
- improvement of the SDD technology

Gettering technique allows to obtain $J_{leak} \sim 25 pA/cm^2$ at ~20C

⁵⁵Fe source spectrum

Room-temperature High-resolution X-ray spectroscopy feasible with Si detectors

Silicon PhotoMultiplier (SiPM)

Avalanche Geiger-mode photodiodes

Each photon triggers a discharge which is shortly quenched

- Gain ~10⁶
- Timing ~ 100ps /1ph.e.
- Bias voltage <100V
- Sensitivity ~1 ph. e.
- QE ~ medium

Array of tiny GM APDs: proportionality

From vacuum...

.. compact, robust, insensitive to magnetic fields

Standard SiPM technology at FBK

RGB Technology

N-on-P structure

Peak sensitivity: Red-Green-Blue

NUV Technology P-on-N structure

Peak Sensitivity: Near Ultra Violet

Parameter	RGB	NUV
Breakdown voltage	28.5 V	26.5 V
Cell Size (Fill Factor)	40 µm (60%)	40 µm (60%)
DCR (20C)	<400 kHz/mm ²	100 kHz/mm ²
DiCT	20%	<10%
DeCT+AP	15%	40%
Max PDE band	480-600 nm	300-400 nm
Peak PDE	35%	35%

Standard SiPM Technology limits

Performance limit

- Limited Fill Factor
- Limited PDE

Possible solution

- Increase cell size
- Reduce dead cell border

 Correlated noise (CrossTalk & AfterPulse)

- Decrease gain (reduce cell size)
- Add optical isolation at cell border

Technology improvement: HD-SiPM (High Density)

Performance limit

- Limited Fill Factor
- Limited PDE

Adopted solution

Increase cell size

• Reduce dead cell border

 Correlated noise (CrossTalk & AfterPulse)

- Decrease gain (reduce cell size)
- Add optical isolation at cell border

SiPM Photo Detection Efficiency (PDE)

BRUNO KESSLER

RGB-HD Technology Standard RGB Technology 30µm 35% FBK RGB-SiF V_{OV} = 6.5 V 30% FBK original SiPM $V_{OV} = 7 \text{ V}$ 25µm 50% 25% T = 20 °C HQ 20% 50 µm cell 20µm PDE @ 591 nm (%) 40% 15% 50µm 10% 15µm 30% 5% 400 600 800 500 700 900 Wavelength (nm) 12µm → 12 μm 20% 📥 15 μm 60% ••• 20 μm \blacktriangle 30 μ m cell V_{ov} = 4 V 10% -**7** 25 μm 30 μm cell V_{ov} = 8 V 50% **----** 30 μm $12 \ \mu m \ cell \ V_{ov} = 4 \ V$ 0% 12 μm cell V_{ov} = 8 V 2 12 14 16 40% 4 8 10 0 6 Over-voltage (V) PDE (%) 30% $\lambda = 590 \text{ nm}$ 30um 20% 12µm 10% 0% 350 400 450 500 550 600 650 700 750 800 850 900 950

Wavelength (nm)

SiPM linearity

Small cells → higher number of cells / unit area Extended dynamic range, better linearity

γ-ray spectroscopy with scintillators

From: M. Grodzicka et al., JINST 9 P08004, 2014

Other past and current activities

- Rad-hard studies on different Si sub types (FZ, Cz, epi, p-type, ...)
- JFET based active elements integrated on the detector substrate
- BJT-based detectors for radon detection
- Diode array for dosimetry applications
- Supports for CNT: surface preparation and electrode definition
- Thin detectors (thinned substrates; multi-layer substrates)
- Neutron detectors (3D holes filled with scintillators)

Substrates

FBK experience in the transition from 4" to 6"

- thin epitaxial used for SiPMs: more choice, better quality
- Limited FZ types from our previous supplier; good/better quality
- Other FZ substrates from brokers: reasonable quality, but no guarantee (unknown producers)
- NTD substrates: High MOQ, high costs
- Thin/Thick substrates; thick epi: difficult to find and/or high costs

Summary and outlook

- 6" transition advantages
 - increase of max device area;
 - increase of # of devices/wafer;
 - access to some substrates of better quality;
 - furnaces assure a better oxide quality
- FBK technologies are evolving
- A new FBK/INFN "MEMS" agreement is under negotation