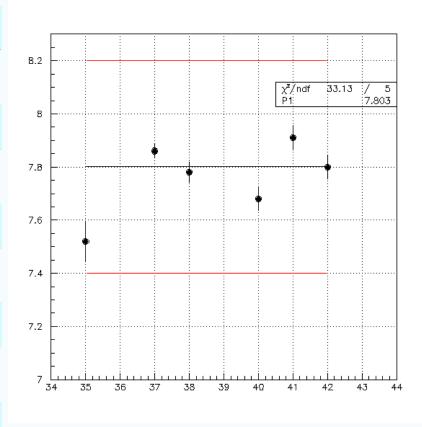
Analisi dei cosmici raccolti durante le misure di resistenza a radiazione

Agenda

Forme d'onda per il cristalli drogati e non.

Stabilita' dell' apparato

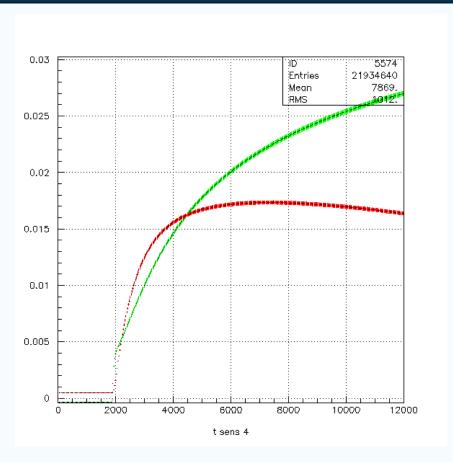

Misura del rumore

Misura della risoluzione energetica relativa

Il setup per cosmici alla Casaccia

- Il setup per la misura di cosmici e' quello sviluppato a Frascati:
 All'interno della scatola trovano posto I cristalli al Tallio da misurare dopo la esposizione alla sorgente γ e per confronto uno dei cristalli di
 - CsI puro della optomaterial, equipaggiato con 4 APD excelitas.
- L'elettronica dei cristalli tallati e' essenzialmente una interfaccia passiva per connettere l'uscita dei preamp standard di Belle al nostro Flash-ADC Caen.
- Quella per il cristallo della optomaterial e' quella sviluppata a Frascati che utilizza il CR-110.
- L'acquisizione, come gia' sottolineato, e' quella che utilizza il Flash-ADC CAEN.
- I dati sono stati raccolti con bin width di 2 nsec $\,$ e span temporale di 12 $\,$ $\mu sec.$

Stabilita' dell' apparato

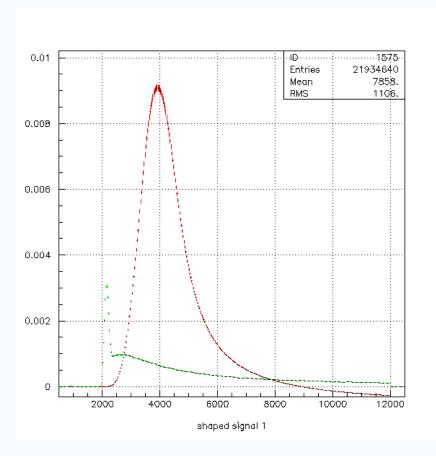

I run coprono un periodo di circa un mese.

35, 37 e 38 sono stati raccolti tra il 3/12 e il 10/12 (2014) . 40, 41 e 42 tra il 7/1 e il 12/1 (2015).

Le due linee rosse danno il limite del 5% rispetto al valore medio.

Ampiezze misurate in mV, metodo del double sampling.

Le forme d'onda acquisite

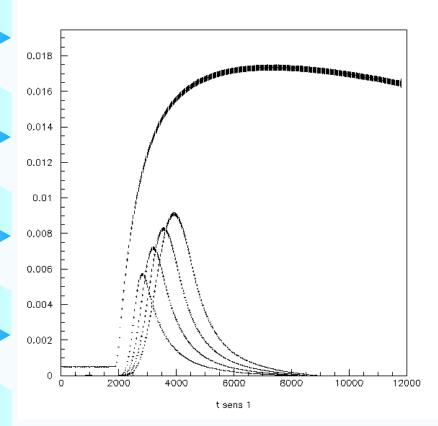


Le forme d'onda medie acquisite : in rosso il cristallo tallato, in verde il cristallo puro.

E' chiara la differenza delle costanti di tempo dei due preamplificatori.

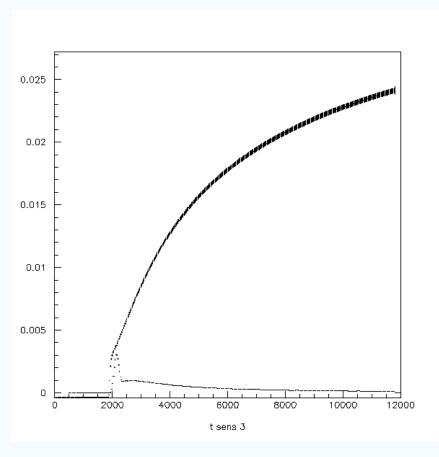
E' visibile la componente rapida del cristallo puro.

Applicando un filtro agli impulsi

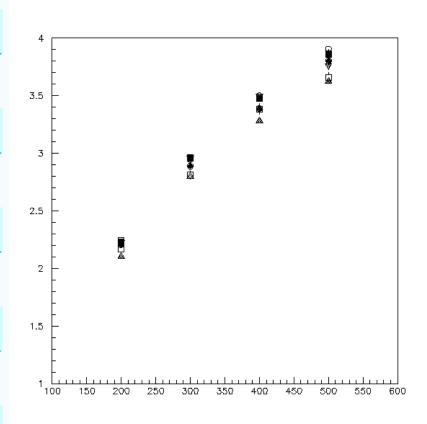


Applicando il solito filtro agli impulsi mostrati precedentemente si ottengono le forme d'onda in figura.

In rosso il cristallo tallato con costante di tempo pari a 500 nsec.

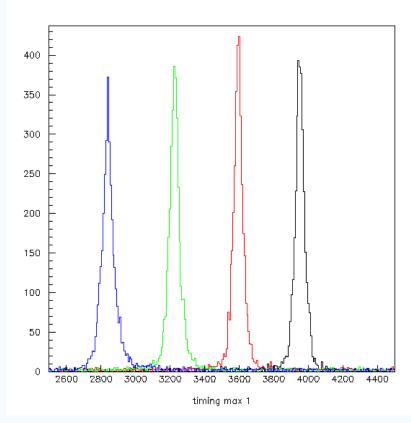

In verde CsI puro con costante di tempo 75 nsec

Cambiando la costante di tempo del filtro



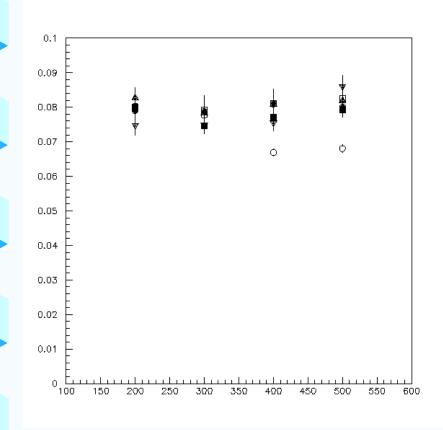
La forma d'onda originale (scale sono Volt e nsec) e la forma d'onda dopo lo shaping effettuato con 500,400,300 e 200 nsec. Sono mostrati gli impulsi mediati su circa 4000 trig's.

Per completezza il CsI puro con 75 nsec


Prestazioni del singolo rivelatore

Ampiezza di impulso (mV) vs costante di tempo del filtro.

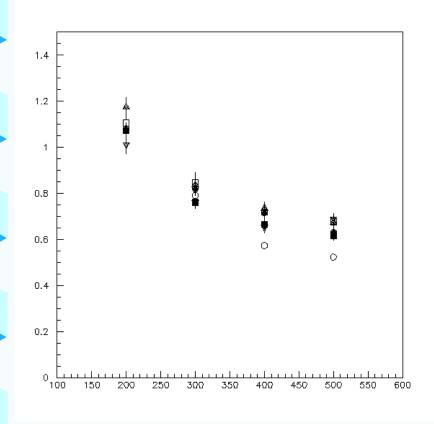
I vari simboli si riferiscono ai differenti runs che come ho menzionato prima sono stati raccolti in un mese circa. Gli errori sono grandi quanto il simbolo stesso.


Prestazioni del singolo rivelatore (cont.)

Timing rivelatore 1:
differenti colori si riferiscono
a differenti costanti di tempo
500, 400, 300 e 200 nsec.
La differenza nei ritardi rispecchia
la differenza nei tempi di
salita (timing preso sul
massimo dell'ampiezza).

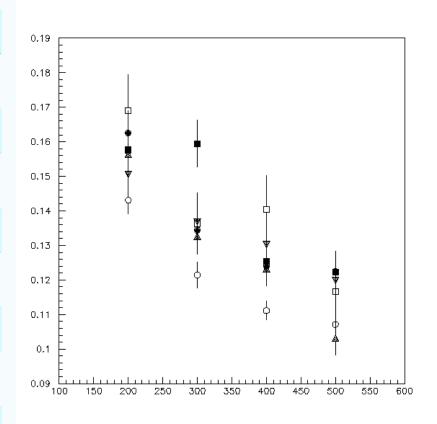
σ ~ 30 nsec.

Prestazioni di singolo rivelatore (cont.)



Larghezza del piedistallo vs costante di tempo del filtro. I vari simboli si riferiscono ai differenti runs.

Con la eccezione di due misure non si vede una dipendenza definita...


Ne consegue che:

Prestazioni del singolo rivelatore (cont.)

La larghezza del piedistallo, misurata in unita' di energia, (ENE) cala all'aumentare della costante di tempo del filtro. I risultati si riferiscono ad un singolo rivelatore e quindi andrebbero riscalati per 0.71 adoperandosene due. A 300 nsec, due PIN darebbero circa 500 KeV di ENE.

Prestazioni del singolo rivelatore (cont)

Risoluzione energetica relativa per cosmici (in realta' upper limit).

Ottenuta fittando il lato sinistro della distribuzione delle ampiezze.

A 300 nsec. ~ 13%.

Riscalando a 100 MeV si otterrebbe con due rivelatori ~ 5 MeV.

Per concludere

- Il cristallo standard di Belle, dopo 125 Gy di radiazione γ , sembra fornire prestazioni del tutto ragionevoli.
- I valori dell'ENE e della risoluzione energetica del singolo rivelatore di luce sembrano adeguate per le richieste poste all'apparato.
- In caso il pile-up richiedesse valori di timing piu' corti si potrebbe lavorare anche con 300 nsec. di costante di tempo.
- Le informazioni necessarie (non sufficienti ?) prima di poter considerare funzionali i cristalli standard di Belle sono:
 - a) dalle simulazioni il contributo del pile-up alla risoluzione.
 - b) il comportamento dei rivelatori di luce esposti alla radiazione γ e n per la parte endcap.