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Outline

 X-ray brightness, beam emittance, and the diffraction limit
 Multi-bend achromat lattices
 Challenges and solutions

– Magnet strength
– Vacuum systems
– Tolerances and correction
– Nonlinear dynamics
– Injection
– Intrabeam scattering
– Beam lifetime

 Advanced IDs and x-ray performance
 Summary
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X-ray Brightness

 Brightness can be expressed as

 Approximate description of single-electron undulator radiation distribution 
(“intrinsic” or “diffraction” distribution)1 

 Electron beam provides “diffraction-limited” radiation when

 In this case, the coherent fraction can be quite high

(simplification)

1P. Elleaume, in Wigglers, Undulators, and Their Applications, 2003.
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How Close are We Now?

 For an undulator filling a typical 5-m-long straight

which is feasible, though not always easy.
 Emittance is another matter

 For typical 3rd-generation rings

so we are several orders of magnitude away from diffraction-limited 
performance in horizontal
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Emittance Scaling

 Emittance is governed by1

 Simple explanation
– Emittance is driven by randomness of photon emission in presence of 

dispersive (energy-dependent) orbits
– Breaking up dipoles and putting focusing (quadrupoles) between the 

parts allows tightly controlling the magnitude of dispersive orbits
 First explorations in mid 1990's2-5

 Various advanced ring designs help illustrate potential and challenges
– MAX-IV (Sweden)6

– ALS-U (US)7

– ESRF-II (France)8

– APS-U (US)9

 Many projects omitted in the interest of time

1:J. Murphy, NSLS Light Source Data Booklet.
2:Einfeld et al., NIM A 335, 1993
3:Joho et al., EPAC 94;
4:Einfeld et al., PAC95
5:Kaltchev et al., PAC95.
6:S. Leemann et al., PRSTAB 12, 120701 (2009).
7:C. Steier, SRN 27, 19 (2014).
8:L. Farvacque et al., IPAC13, 79 (2013).
9:G. Decker, SRN 27, 13 (2014).
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MAX-IV Multibend Achromat Lattice

 3 GeV, w/528-m circumference 
 Relatively uniform, small 

dispersion and beta functions in 
the central section of each cell

 Natural emittance 326 pm
– DBA NSLS-II reaches 1 nm 

with 792-m circumference 
and damping wigglers

 Commissioning in Aug. 2015

All figures courtesy S. Leemann, MAX-Lab.

Gradient dipolesQuadrupoles Sextupoles



C. Steier, ALS SAC, ALS-U R+D, 2015-3-237

Multi-Bend Achromat Lattices Enable Small Electron 
Emittance and High X-Ray Brightness

ALS-U
multi-bend achromat (9BA)

ALS today
triple-bend achromat (TBA)

TBA 9BA
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x   2000 pm @ 1.9GeV x   52 pm @ 2.0GeV

12 cells, 192m circumference



Blue: Dipoles Red: Quadrupoles Green: sextupoles

The ESRF 6 GeV low emittance lattice

Proposed Hybrid 7 Bend 
lattice Ex = 150 pm.rad 

●7 bending magnets D1to D7
● reduce the horizontal emittance
● Diffraction-limited to 0.7 keV

●Space between D1-D2 and D6-D7
● β-functions and dispersion allowed to 

grow 
● chromaticity correction with efficient 

sextupoles

● Dipoles D1, D2, D6, D7 
● longitudinally varying field to further 

reduce emittance

●  Central part alternating 
● combined dipole-quadrupoles D3-4-5
● high-gradient focusing quadrupoles

D1 D2 D6 D7
D3D4D5

Courtesy P. Raimondi, ESRF.
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APS-U Hybrid 7+6BA Lattice Concept

Longitudinal gradient dipoles

Transverse
gradient dipoles

1: L. Farvacque et al., IPAC13, 79.
2: A. Streun, NIM A 737, 148 (2014).

 Inspired by ESRF-II design1

 Contemplating 6 weak reverse dipoles2 to improve dispersion control
– Lower emittance, longer lifetime

Reverse dipoles
(offset quadrupoles)
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Fundamental Challenges of Low Emittance

 To reduce the dispersion function, must focus more frequently and 
more strongly

 Many strong quadrupoles → larger natural chromaticity
 Chromaticity sextupoles are less effective because of small dispersion
 Very strong sextupoles introduce strong

higher-order aberrations
– Increased difficulties with

injection, beam lifetime
 We used a model 4.5 GeV, 

600-m ring to study scaling
of ring parameters1

1: M. Borland, et al. J. Synch. Rad 21, 912-936 (2014).

1/N
d

2.9

N
d
 = N

s
M



M. Borland, The diffraction-limited storage ring frontier, July 2015, Varenna, Italy 11

Scaling of Magnet Strengths 

 Emittance decrease is dramatic, but...
– Gradients grow like N

d
2

– Average dispersion drops like 1/N
d

2

– Sextupole strength grows like N
d

3 

 Need smaller magnet apertures
to produce these strengths

1/N
d

1.9 SD:N
d

2.9

SF:N
d

3.2

QF:N
d

1.8

Bend/QD:N
d

2.4
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Scaling of Magnet Apertures 

 Required magnet bore radius R

 Assuming 1T pole tip field, for ultra-low emittance, need ~10mm sextupole bores
– Prohibitive for high-energy rings using MAX-IV style lattice
– Better optics design (e.g., ESRF-II) can reduce sextupole strengths

 12-13mm bore radii are typical for new ring designs
– Present-day APS has 40 mm bore radii

Estimated QF(black) and BQD (red) bore Estimated SF (black) and SD (red) bore

~1/N
d

2 ~1/N
d

1.5
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Vacuum System Challenges and Solutions

 Required small vacuum bores present many challenges, including
– Handling of synchrotron radiation power
– Achieving sufficiently low pressure
– Maintaining sufficiently low beam impedance
– Extraction of photons for users

 MAX-IV makes extensive use of NEG-coated copper chambers, minimal lumped 
pumping

– Need for high-temperature activation of NEGs complicates installation
– SIRIUS taking similar approach, but with integrated NEG heaters

 APS-U using a hybrid approach 
– NEG-coated Cu in central section, where space is most restricted and SR power is highest
– Elsewhere, “traditional” NEG-pumped ante-chambers and lumped pumps
– Workable approach in a larger ring, simplifies installation

APS

APS-U Concepts

Figures courtesy B. Stillwell (ANL).
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Impedance and Single Bunch Current Limit1

 APS-U targeting 4.2 mA/bunch for
48-bunch, 200-mA timing mode

– Requires careful iteration of
vacuum system design

– Design of a lattice with sufficient
positive residual chromaticity

 Prediction is that 4.2 mA is possible
with chromaticity of +5

– With latest design, margin higher
than shown 1: R. Lindberg et al., IPAC15, TUPJE077, TUPJE078.
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Longitudinal phase space impacted by impedance

200 mA in 48 bunches

200 mA in 324 bunches

 Intense bunches are disrupted by 
microwave instability

– No beam loss, but energy 
spread is inflated

 Threshold is at ~0.5 mA/bunch
– In APS today, threshold is ~5 

mA/bunch
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Scaling of Alignment Requirements

 Misaligned magnets perturb the beam
– Misaligned quadrupoles → orbit kicks
– Misaligned sextupoles → focusing and coupling errors

 Orbit amplification is generally about the same
– Aided by significant reduction in beta functions

 Beta function modulation is much worse per unit misaligment
– For DBA → 7BA, need ~10-30x better alignment of sextupoles
– E.g., 5-15 microns instead of 150

Horizontal:N
d

0.4

Vertical:N
d

-0.3

Vertical:N
d

1.8

Horizontal:N
d

2.7
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Magnet Alignment Strategies

 MAX-IV is using multi-magnet blocks
– Magnets share a common yoke 

structure with ~20 micron precision
 So far, only used at MAX-Lab

– Very complex assemblies
– Magnetic measurement difficult
– Difficult to scale to high energy (size, weight)

 NSLS-II demonstrated ~10 micron alignment using stretched-wire technique1

 APS-U considering hybrid strategy
– Precision machined plates and mating surfaces on magnets
– Alignment verification/remediation using stretched wire

APS-U concept for magnet supports and alignment. Courtesy J. Collins, ANL.

Courtesy S. Leemann, MAX-Lab.

1: A. Jain, private communication.
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APS-U Commissioning Simulation1

 Commissioning involves coming to grips with imperfections of the real machine
 Performed a realistic simulation of commissioning steps, including

– Error generation (see table)
– First-turn trajectory correction
– Orbit correction with small number of correctors
– Orbit correction with reduced BPM displacement errors

• Reflects expected improvement from beam-based alignment
– Beta function correction 
– Coupling correction (minimizing cross-plane response matrix)
– Emittance ratio adjustment to 10% at separated tunes

 Succeeded in 98% of cases

These error levels
appear readily 
achievable based on
recent experience,
e.g., NSLS-II.

1: V. Sajaev et al.,
IPAC15, to be
published.
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Tracking-based Optimization1,2

 Tracking-based optimization allows directly optimizing lattice and sextupoles for
– Large dynamic acceptance
– Large Touschek lifetime (via local momentum acceptance)

 Unlike theoretical approaches, can include
– Effects of likely errors
– Effects of radiation damping and synchrotron motion
– Vacuum chamber dimensions

Tracking-based optimization
makes significant improvements
starting from ESRF-II scheme, even 
with initial tunes chosen for fourth-
order achromatic condition.

Starting point

1: See citations in M. Borland, IPAC12, 1035.
2: M. Borland, et al. J. Synch. Rad 21, 912-936 (2014).
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APS-U 10th-Percentile DA w/ID Chambers

 Compared to a typical wide ID chamber, round or narrow chambers have little 
impact 

 Option for vertically-deflecting devices, round-bore helical devices
– Such devices not readily compatible with accumulation-based operation
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Swap-out Injection
 On-axis “swap-out” injection1,2,3 is an alternative to accumulation

– Each injector shot replaces an existing stored bunch
– DA must accommodate only the injected beam size

 Swap-out (APS-U and ALS-U) seems advantageous on balance
– Pro:

• Smaller horizontal physical apertures possible in IDs
• Nonlinear dynamics optimization can emphasize lifetime instead of DA
• Emittance can be pushed to smaller values
• Less disturbance to stored beam

– Con:
• Single-bunch current limited by injector capability
• Maximum number of bunches limited by fast kicker technology

x

y

One stored
bunch is kicked
out

1:  E. Rowe et al., Part. Accel. 4, 211 (1973).
2: R. Abela et al., PAC91, 486 (1992).
3: L. Emery et al., PAC03, 256.



22

Fast kicker magnets

storage ring bunches transferred to accumulator
accumulator bunches transferred to storage ring

New accumulator ring

New ALS storage ring

Swap-out injection [with an accumulator] was first 
proposed by M. Borland for possible APS upgrades

Swapping Accumulator and Storage Ring Beams

22Courtesy C. Steier, ALS.
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Intrabeam scattering and Touschek lifetime

Computations from TAPAs, tinyurl.com/borlandTAPAs

 Low emittance beams have high particle density in bunches, leading to
– Emittance growth due to intrabeam  scattering (IBS)
– More rapid particle loss due to Touschek scattering, scaling like N

d
3.5

 Counter-measures
– Many weak bunches
– Running with “round beams,” i.e., κ=ε

y
/ε

x
≈1

– Bunch-lengthening using a higher harmonic cavity (HHC)
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Suppression of Intrabeam Scattering (IBS)

 Multiple scattering within a bunch leads to emittance and energy spread growth
 IBS effects not negligible even for 324 bunch flat beams
 HHC provides ~4-fold reduction in emittance increase from IBS
 “Round beams” also effective

– Most readily compatible with on-axis injection

Flat beams (κ=0.1) Round beams (κ≈1)

324 bunches 48 bunches 324 bunches 48 bunches
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Effect of HHC (Passive, Optimal Detuning)

 Rms bunch duration exceeds 75ps
– 12.5 ps at zero current

 Microwave instability is 
considerably quieter

 324 bunch case has a somewhat 
split bunch

200 mA in 48 bunches

200 mA in 324 bunches

 For 48 bunches, Touschek lifetime 
improves ~2-fold

– Less than nominal 4-fold because 
MWI already lengthened the 
bunch

 For 324 bunches, Touschek lifetime 
improves ~4-fold
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Advanced IDs

 Advanced IDs further boost brightness, flux
 Superconducting planar undulators1

– Out-perform in-vacuum IDs even with 
NbTi superconductor

– APS SCU in operation for >2 years
 Helical SCUs2

– Bi-filar devices can provide
arbitrary polarization with
relatively fast switching

– Suitable for 4GSRs using swap-out
 Horizontal-gap IDs3

– Smaller, lighter, cheaper due to use
of spring-based force compensation

– Vertical polarization beneficial
for beamline design, stability

– Suitable for 4GSRs using swap-out

R. Dejus et al.

1: Y. Ivanyushenkov, IPAC14, 2053-2055.
2: Y. Ivanyushenkov, IPAC14, 2050-2052.
3: E. Gluskin, IPAC15, TUXC1.

HG ID prototype for LCLS-II
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APS-U X-ray Brightness Compared to APS Today

 Used κ=1 for 48 bunch mode and κ=0.1 for 324 bunch mode in “official” 67-pm 
lattice

 Assumed magnetic gap of 9 mm for 4.8-m HPM and 3.7-m SCU devices in APS-U
 Assumed APS High Heat Load (HHL) front end limits on power, power density
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 What to do with Tevatron tunnel now?
 Exploratory light source design

– Roughly match 6-straight, 6-arc geometry
– Use PEP-X optics modules2

• 6 arcs with 30 cells of 7BA giving N
s
*M=1260

• Relax cell tunes, giving 
0
=2.9 pm at 9 GeV

– Preliminary optimization gives 
• Adequate DA for on-axis injection, 4.5 h gas-scattering lifetime
• Adequate LMA for 3 h Touschek lifetime for 0.75nC/bunch

τUSR: A Tevatron-Sized USR1

1:M. Borland, ICFA Beam Dynamics Newsletter 57, 2012;  IPAC12,TUPPP033.
2:R. Hettel et al., PAC 11, 2336 (2011).

=6.28...

Emittance with IBS shows
broad minimum between
9 and 11 GeV with a minimum
of about 3 pm in both planes.

Diffraction-limited to 33 keV

Further improvement possible
with damping wigglers
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Explore light source physics

 A free Android app is available that lets you explore storage ring scaling
 Also has synchrotron radiation calculations, FELs, top-up/swap-out, etc.
 Search for “TAPAs Accelerator Physics” on the Google store

Ring scaling Undulator radiation FEL estimation
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Conclusions

 3rd generation storage ring light sources are among the most 
successful scientific tools ever built

 We’ve learned a great deal since the first of these sources began 
operating ~20 years ago

 There is world-wide activity to design and build 4th generation 
storage ring light sources

 100x increases in brightness and 10x increases in flux are within 
reach

 Challenges are many, but all appear manageable
 Another order of magnitude appears feasible with much larger rings
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