

Wir schaffen Wissen – heute für morgen

Layout and Opportunities with SwissFEL

Chris Milne on behalf of R. Abela, B. Patterson, J. Szlachetko, G. Ingold, P. Beaud, L. Patthey, U. Flechsig, R. Follath, C. Erny, J. Schneider, C. Hess, A. Oggenfuss, B. Pedrini, P. Juranic, J. Rehanek, P. Heimgartner, P. Wiegand, P. Fischer, J. Czapla-Masztafiak, T.J. Penfold, G. Knopp, M. van Daalen, H. Braun, R. Ganter, M. Calvi, T. Schmitt, C. Pradervand, C. Seiler, J. Réhault, Y. Deng, J. Stettler, S. Reiche, A. Mathys, A. Alarcon, F. Lohl, C. Vicario, A. Trisorio, M. Divall, L. Sala, M. Radovic, Ch. Hauri, M. Pedrozzi...

Paul Scherrer Institute

Home of the Swiss Light Source synchrotron, a proton accelerator, and a spallation neutron source
1500 staff, 300 PhD students

- PSI Forum has 15,000 visitors per year
- Proton therapy facility

July 10, 2015

chris.milne@psi.ch

Brief project history at PSI

2003-2005 Low-Emittance Gun (LEG) Project at PSI 2005-2008 PSI-XFEL Project 2009 Beginning of SwissFEL Project

Swiss Parliament passes research funding law 2013-16 including mandate for PSI to build SwissFEL

Parliament approves 2013 government budget including funding for SwissFEL building

December 2012: We received the green light to start building SwissFEL

SwissFEL location at the Paul Scherrer Institute

chris.milne@psi.ch

July 10, 2015

2012-2017

Aramis: 1-7 Å (2-12.4 keV) hard X-ray SASE FEL, In-vacuum , planar undulators with variable gap User operation from mid 2017

after 2017

Athos :7-70 Å (200-1700 eV) soft X-ray FEL for SASE/seeded operation(2nd phase)APPLE II undulators with variable gap and full polarization controlTo be implemented after 2017

Aramis: Hard X-ray self-seeding

SwissFEL parameters

Wavelength from	1 Å - 70 Å
Photon energy	0.2-12 keV
Photon / pulse (1Å)	7.3E+10
Pulse duration	1 fs - 20 fs
Energy bandwidth	0.05-0.16%
e⁻ Energy	5.8 GeV
e ⁻ Bunch charge	10-200 pC
Repetition rate	100 Hz

	Nominal Operation Mode		Special Operation Mode	
FEL Beam Design Parameters	Long Pulses	Short Pulses	Large Bandwidth	Ultra-Short Pulses
Undulator period (mm)	15	15	15	15
Undulator parameter	1.2	1.2	1.2	1.2
Energy spread (keV)	350	250	17000 (FW)	1000
Saturation length (m)	47	50	50	50
Saturation pulse energy (µJ)	150 (*)	3	100	15
Effective saturation power (GW)	2.8	0.6	2	50
Photon pulse length (fs, rms)	21	2.1	15	0.06
Beam radius (µm)	26.1	17	26	17
Divergence (µrad)	1.9	2	2	2.5
Number of photons	7,3.10 ¹⁰	1,7. 10 ⁹	5.10 ¹⁰	7.5. 10 ⁹
Spectral Bandwidth, rms (%)	0.05	0.04	3.5 (FW)	0.05
Peak brightness (# photon/mm ² .mrad ² .s ¹ .0.1% bandwidth)	7.10 ³²	1.10 ³²	8.10 ³⁰	1,3.10 ³³
Average brightness (# photon/mm ² .mrad ² .s ¹ .0.1% bandwidth)	2,3.10 ²¹	5,7.1018	3.1019	7,5.1018

SwissFEL Linac Modules

	# RF stations	<i>E</i> (GeV)
Injector	1+1+4 S-band, 1 X band	0.355
Linac 1	9 C-band	2.1
Linac 2	4 C-band	3.0
Linac 3	13 C-band	5.8

July 10, 2015

chris.milne@psi.ch

Romain Ganter and co-workers

Symmetric Support Structure: Stability & Cost effective Mineral Cast: Mechanical Rigidity Gap Adjustment with Wedge system: Precision (0.3 µm)

Undulator Type	Hybrid – In Vacuum
Undulator Magnetic Length	3990 mm
Number of Undulators	12
Undulator Period	15 mm
Nominal K value	1.2
Nominal gap	4.7 mm
Magnetic material	NdFeB-Dy
Pole Material	CoFeVa

Key building block for SwissFEL beamlines 12 x 17t of precision mechanic

First **U15** is getting ready for installation in WLHA injector test facility Q4-2013

Key industry partners:

- MDC Daetwyler Industries (CH)
- Bruker (D)
- Hitachi (Jp)
- Micro-Waterjet (CH)
- Vakuumschmelze (D)

ARAMIS optical layout

Delivery & Installation Oct. / Nov. 2015

R. Follath et. al., SRI Proceedings (2015)

oneering New Horizons in Science TOYAMA

- WTO tender published
- KO-Meeting
- Delivery & Installation
- 12. Dec. 2014 30. Jun 2015 Nov. / Dec. 2016

SwissFEL Experimental Stations

Bruce Patterson and co-workers

ESA:

Ultrafast photochemistry and photobiology

ESB:

Pump-probe crystallography

Phase I: Ready by 2017

B. Patterson et. al., CHIMIA 68, 73 (2014)

ESC: Phase II: >2017

Materials science and nanocrystallography

Scientific Case B. Patterson editor

http://www.psi.ch/swissfel/

July 10, 2015

chris.milne@psi.ch

Future Research Infrastructures, Varenna, Italy

- FED

ESA: Ultrafast photochemistry and photobiology

C. Milne, J. Szlachetko and G. Knopp

July 10, 2015

chris.milne@psi.ch

July 10, 2015

chris.milne@psi.ch

ESA Prime

- works under He or vacuum to use the 2-5 keV range
- located at the 1 µm achromatic X-ray focus (KB mirrors)
- emphasis is on combined scattering and spectroscopy measurements

ESA Flex

- flexible station to accommodate user chambers and constrained geometries
- ability to easily change the spectrometer position will provide the highest energy resolution and the ability to change the scattering geometry

July 10, 2015

A. Ammon

and C. Seiler

Inelastic X-ray Scattering at ESA Flex

Collaboration with SuperXAS beamline

July 10, 2015

chris.milne@psi.ch

ESA Prime status: design completion goal July 2015

PAUL SCHERRER INSTITU ESA Prime: 'Tender' X-ray von Hamos spectrometer

- exotic crystals
- Needs to operate in vacuum to avoid X-ray loss
- Spectrometer compartment should be isolated from sample compartment
- Crystals and detectors need some travel range to cover the desired X-ray energies
- This X-ray energy range is a priority for SwissFEL

chris.milne@psi.ch

ESA Prime: Scattering experiments

Goals

- Detector as close as possible (100 mm)
- Protect detector from sample/He/mechanical damage/optical laser with window (Kapton/Mylar)
- Simultaneous use of spectrometer and Jungfrau 16M
- Two horizontal chamber positions for different experimental priorities (scattering/diffraction Vs spectroscopy)

Lipidic-cubic phase jets for SFX

J. Standfuss, P. Nogly, G. Schertler (BIO)

Tested LCP jet at ESRF microfocus beamline and under pump-probe conditions at LCLS (CXI)

IUCrJ ISSN 2052-2525 BIOLOGY MEDICINE Lipidic cubic phase serial millisecond crystallography using synchrotron radiation

Przemyslaw Nogly,^a Daniel James,^b Dingjie Wang,^b Thomas A. White,^c Nadia Zatsepin,^b Anastasya Shilova,^d Garrett Nelson,^b Haiguang Liu,^b Linda Johansson,^e Michael Heymann,^c Kathrin Jaeger,^a Markus Metz,^{c,f} Cecilia Wickstrand,^g Wenting Wu,^a Petra Båth,^g Peter Berntsen,^g Dominik Oberthuer,^{c,f} Valerie Panneels,^a Vadim Cherezov,^e Henry Chapman,^{c,h} Gebhard Schertler,^{a,i} Richard Neutze,^g John Spence,^b Isabel Moraes,^{j,k,l} Manfred Burghammer,^{d,m} Joerg Standfuss^a* and Uwe Weierstall^b*

Received 16 October 2014 Accepted 1 December 2014

media courtesy of Przemek Nogly

July 10, 2015

chris.milne@psi.ch

SwissFEL Experimental Station A

<u>X-ray</u>

t.ray prob

 monochromatic (0.01% BW) and broadband (1-4%)

- variable focus (1-100 μm)
- tuneable energy (2-12.4 keV)
- ultrashort pulse durations (<1 fs to 50 fs)

<u>Laser</u>

- high pulse energies (5-10 mJ)
- short pulses (20-50 fs)

aser pump

- tuneable wavelengths including IR, visible, and UV
- preparation for THz and <10 fs</p>

Available experimental configurations

 pump-probe sample chamber for use at low pressure and controlled environments with all probe techniques

- 2D scattering detector (PSI 16M Jungfrau, 75 μm pixels, 10⁴ dynamic gain)
- ESA Prime instrument covering the 1-12 keV range (XES, HEROS, IXS, RXES)
- \odot jets for solution samples (100 μm) and serial fs crystallography (4 μm)

→ pump: launch coherent excitation (phonon, spin wave, charge wave, orbital wave, ...) \rightarrow tune system close to critical point (apply static pressure or B-field at low T)

\rightarrow X-ray probe: how does the (coherent) excitation evolve in time ?

 \leftrightarrow tr-XRD: measures changes in lattice constants & symmetry

- \leftrightarrow tr-RXRD: sensitive to coupling of charge-, orbital- and spin-order (\leftrightarrow polarization)
- \leftrightarrow tr-(N)TDS: measures S(**q**, ω = 0) & fluctuating coherence length ξ_F

 \leftrightarrow tr-(R)IXS: measures S(**q**, ω) & change of momentum dispersion

July 10, 2015

chris.milne@psi.ch

Femtosecond Pump-Probe X-ray Diffraction and Scattering (Crystalline Samples) Energy Range 4.5 - 12.4 keV, X-ray Spot Size 2 - 200 μm

Single X-ray focus position – two Endstations:

- Pump-Probe General Purpose Station: XPP GPS (Heavy Load Station + Robot Detector Arm)
- Pump-Probe (Resonant) Diffraction: XPP XRD (Six-Circle Kappa Diffractometer)

(Cryo Diffraction Chambers mounted on both stations)

SwissFEL ESB: Two Endstations

July 10, 2015

chris.milne@psi.ch

THz Pump – XRD Probe Setup (R&D FEMTO@MicroXAS)

July 10, 2015

chris.milne@psi.ch

Fixed target protein crystallography module at ESB-GPS

- Movable, suitable for ESB-GPS
- Room temperature AND Cryo
- In-air AND In-helium
- 100 Hz serial (scanning) femtosecond crystallography (< 5 μm xtals)
- Synchrotron-like femtosecond crystallography (> 5 μm xtals)

Serial (scanning) femtosecond crystallography

Synchrotron-like femtosecond crystallography

July 10, 2015

chris.milne@psi.ch

SwissFEL Experimental Station B

Goal: To have this ready by 2017

Available experimental configurations

- 6-circle diffractometer
- 2D scattering detector (PSI 16M Jungfrau, 75 µm pixels, 10⁴ dynamic range)
- HV/UHV diffraction chamber with cryo cooling (10-700 K)
- Time arrival monitor <10 fs P. Juranić et. al., Opt. Expt. 22, 30004 (2014).
- General-purpose station for hosting user setups (e.g. fixed-target protein crystallography)

Phase alpha 201X

Parameter	Value
Focusing scheme	КВ
Photon energy	4.0 – 12.6 keV
Focus size	150 nm
Transmission	0.7 – 0.8
Distance from last mirror	350 mm

ParameterValueFocusing schemeMultilayer KBPhoton energy12.2 – 12.8 keV (e.g.)Focus size20 nmTransmission0.2 – 0.5Distance from last mirror30 mm

Phase beta 20XX

- Material science at the nanoscale
- Non/linear X-ray optics
- Protein 2D crystallography
- (Single particle imaging)

Send your great ideas to Bill Pedrini bill.pedrini@psi.ch

Calculations by $\ensuremath{\textbf{Rolf Follath}}$

In progress, stay tuned...

chris.milne@psi.ch

Acknowledgements

SwissFEL project:

FEMTO group: SYN department:

BIO department: GFA department: ETH Zürich: CFEL: LCLS: EPFL: XFEL: DTU: Wigner: **Rennes:** Fribourg:

R. Abela, P. Juranic, B. Pedrini, L. Patthey, Ch. Erny, B. Patterson, L. Sala, T. Penfold, P. Heimgartner, P. Wiegand, J. Szlachetko, G. Knopp, J. Réhault, Y. Deng

G. Ingold, S. Grübel, P. Beaud, J. Rittmann; U. Flechsig, R. Follath, B. Schmitt, A.

- Mozzanica, M. Nachtegaal, D. Grolimund, C. Borca, A. Menzel, T. Huthwelker, U. Staub; J. Standfuss, G. Schertler, V. Pannéels
- S. Hunziker, S. Reiche, V. Schlott, M. Kaiser;
- S. Johnson;
- N. Huse;

R. Coffee, D. Fritz, M. Trigo;

- M. Chergui, F. van Mourik;
- W. Gawelda, A. Galler;
- K. Haldrup;
- G. Vankó;
- M. Lorenc;
- J-C. Dousse, J. Hoszowska;

ESA Review Committee

Wojciech Gawelda (XFEL) György Vankó (Wigner Institute) Andreas Menzel (PSI) Daniel Grolimund (PSI) Majed Chergui (EPFL) Jean-Claude Dousse (U. Fribourg) Eric Dufresne (Argonne) Aymeric Robert (LCLS) Josef Feldhaus (DESY)

ESB Review Committee

Steve Johnson (ETHZ) Henrik Lemke (LCLS) Claudio Masciovecchio (FERMI) Urs Staub (PSI) Jörg Strempfer (DESY) Phil Willmott (PSI) Michael Först (CFEL)