
Web Services

CMS and Agata Run Control
The GRIDCC Project

Michele Gulmini
INFN Laboratori Nazionali di Legnaro

Incontro CCR - December 10, 2008

Contents

• The CMS Run Control and Monitor System
• Service Oriented Architecture

• Developing Web Services
• Server side experience

• The GRIDCC project

• The Agata Run Control

• Developing Web Services
• Client side experience

Incontro CCR - 10.12.2008 M.Gulmini
2

CMS

DAQ TDR Design

Total weight: 12500 T
Overall diameter: 15.0 m
Overall length: 21,5 m
Magnetic field: 4 Tesla

10.12.2008

Incontro CCR - 10.12.2008 M.Gulmini
3

Control and Monitor Requirements

Baseline DAQ
Configuration

• 512 inputs
• 2024 outputs

Control and Monitor Control and Monitor
requirements

• O(104) distributed Objects
to
– control
– configure
– monitor

• On-line diagnostics
• Interactive system

Incontro CCR - 10.12.2008 M.Gulmini
4

Run Control and Monitor System

RCMS is integrated in the CMS On-line system :
• It controls the “DAQ component”

– Data transport
– Event processing

• It monitors the “Detector Control System” DCS
– manages the slow controls of the whole experiment.

The SOAP protocol and the Web
Services have been adopted as the
main means for communication .

The online process environment is XDAQ,
a C++ framework for a distributed Data

Acquisition System.

Incontro CCR - 10.12.2008 M.Gulmini
5

RCMS – Run Control and Monitor System

• 1998: Java and CORBA (Common Request Broker
Architecture) as communication backbone
– Used in test-beams and DT chambers production centers

• 2001: HTTP + XML communication (JAXM)
– Tomcat application server
– Java applet GUI

• 2003: Adoption of SOAP as control communication backbone

Service Oriented Architecture

• 2003: Adoption of SOAP as control communication backbone
– First RCMS official release (RCMS 1)
– “DAQKit” for CMS sub-detector DAQ teams
– Used in test-beams and production centers

• 2005: WSDL and Apache Axis
– RCMS 2
– JSP based GUI
– Sub-detector local DAQs, MTCC I&II (2006)

• Sept 2008 : first LHC collision beam
– RCMS 3: Tomcat 5.5, Axis 1.4

Incontro CCR - 10.12.2008 M.Gulmini
6

RCMS Architecture

Top FM Services
Services

Services

Sub-Detector
Sub-Detector

Sub-Detector

Sub-Detector

Sub-Detector

Sub-Detector

DAQ (XDAQ)
Resources

Input
Handler

Event
Processor

FSM
Engine

Resource
Proxy

Function Manager

Resources

State Flow

Error Flow

Monitor Flow

Control Flow

Customizable

Incontro CCR - 10.12.2008 M.Gulmini
7

Control Structure at MTCC I & II (2006)

Web Browser (GUI)

Level 0 FM

Level 1 FM

User interaction with Web
Browser connected to Level 0

FM.

Level 0 FM is entry point
to Run Control System.

Level 1 FM interface to
the Level 0 FM and

have to implement a
standard set of inputs

TOP

LTC

CSC DAQ

RPC DT

TRK

ECAL

HCAL
Level 1 FM

Level 2 FM

Level 2 FMs are sub-
system specific custom

implementations.

standard set of inputs
and states.

FB RB FF

Resources

FEC FED

Resources are on-
line system

components

Incontro CCR - 10.12.2008 M.Gulmini
8

RCMS & Web Services – Why?

• TDR(2002):
– it is planned to maximise the use of standard software

technologies in the RCMS.
– Web technologies and in particular Web Services have been

chosen because they have been designed to interconnect highly
heterogeneous and distributed systems, therefore implying a rich
choice of available tools and solutions.

– Many of these widely-spread software tools follow an open-source
approach, thus facilitating the integration with other software approach, thus facilitating the integration with other software
packages.

• Central DAQ provides tools to the sub-detector DAQ teams to
develop their own local DAQ and control systems (XDAQ and
RCMS).

• Adoption of XDAQ and RCMS (DAQKit) in the sub-detectors
makes the integration of the overall CMS DAQ easier.

• Adoption of web services standards (WSDL and SOAP) helps
sub-detector custom developments integration.

Incontro CCR - 10.12.2008 M.Gulmini
9

Web Services:

Server Side
Development

Incontro CCR - 10.12.2008 M.Gulmini
10

Web Services: the beginning

• WSDL Experience in CMS started in 2004
– Major revisit of all CMS DAQ software (XDAQ 3, RCMS2 …)

• Sun J2EE (Java 2 Enterprise Edition) tutorial is probably the
best way to start learning and working with Java Web Services
– Web Services are a sub-set of the J2EE specifications

• Apache Axis documentation is also quite good

• A (quick) investigation was done:
– Apache Tomcat / Axis 1.2
– Sun JWSDP 1.4 (Java Web Service Development Package)

• Uses Tomcat

– Sun Java System Application Server 8

• Interoperability tests :
– Web Service interface defined in Java
– WSDL generated from Java by using “Java2WSDL” tools (available

both for Sun and Axis)

Incontro CCR - 10.12.2008 M.Gulmini
11

Apache Axis & Sun JWSDP

• Web Application Life Cycle:
– 1. Develop the web component code .
– 2. Develop the web application deployment descriptor.
– 5. Deploy the application into a web container .

• 1) Java Code :
– (almost) 100% reusable

• If careful to use only “standard” (JAX-RPC) APIs• If careful to use only “standard” (JAX-RPC) APIs
• Examples provided by Axis and Sun often use “custom” classes (API

implementations)
– javax.xml.rpc.* classes – OK
– org.apache.axis.* classes – NO (for code reuse)

• 2) Deployment descriptors:
– Custom (deploy.wsdd, sun-<module-type>.xml, …)

• 5) Web container installation, configuration, maintena nce
– Custom

Full interoperability was demonstrated
Incontro CCR - 10.12.2008 M.Gulmini

12

Tomcat/Axis Java – The choice

• Had already experience with Apache Tomcat
– Open source and free to use
– already powering numerous large-scale, mission-critical web

applications

• The learning curve of a new Application Server in not deep
– Sun Application Server is quite complex
– JWSDP Reference Implementation was using Tomcat– JWSDP Reference Implementation was using Tomcat

• Axis has a very active user community and was already adopted
by many companies
– implements a sub-set of the J2EE functionalities

• Migration to another J2EE Application Server does not imply
java code changes

• Links: http://ws.apache.org/axis/ , http://tomcat.apache.org/
Incontro CCR - 10.12.2008 M.Gulmini

13

WSDL and Java Interface

• WSDL is complex
– It is not easy to write it by hand.
– It is more comfortable (easier and faster) to define the services API

in Java and then generate the WSDL (Java2WSDL tools)

• Java to WSDL mapping - Limitations
– “Behind the scenes, JAX-RPC maps types of the Java

programming language to XML/WSDL definitions. For example, programming language to XML/WSDL definitions. For example,
JAX-RPC maps the java.lang.String class to the xsd:string XML
data type. Application developers don’t need to know the details of
these mappings, but they should be aware that not every class in
the Java 2 Platform, Standard Edition (J2SE) can be used as a
method parameter or return type in JAX-RPC”.

– Supported types:
• boolean, int, …
• java.lang.Boolean, java.lang.Integer,…
• Arrays: boolean[], int[], …
• Java Beans

Incontro CCR - 10.12.2008 M.Gulmini
14

WSDL and Java Exceptions

• Exceptions (Axis documentation)
– This is an area which causes plenty of confusion, and indeed, the

author of this section is not entirely sure how everything works,
especially from an interop perspective.

– RemoteExceptions map to SOAP Faults
• If the server method throws a java.rmi.RemoteException then this will be mapped into a SOAP

Fault. The faultcode of this will contain the classname of the fault. …If the recipient does not
know how to create an instance of the received fault, this mechanism does not work. …you can
only reliably throw java.rmi.RemoteException instances, rather than subclasses.

• When an implementation in another language receives such an exception, it should see the • When an implementation in another language receives such an exception, it should see the
name of the class as the faultCode, but still be left to parse the body of the exception. You
need to experiment to find out what happens there.

– Exceptions are represented as wsdl:fault elements
• If a method is marked as throwing an Exception that is not an instance or a subclass of

java.rmi.RemoteException…The exception is no longer a SOAP Fault, but described as a
wsdl:fault in the WSDL of the method. According to the JAX-RPC specification, your subclass of
Exception must have accessor methods …

• If your exception meets this specification, then the WSDL describing the method will describe
the exception too, enabling callers to create stub implementations of the exception, regardless
of platform.

• Again, to be sure of interoperability, you need to be experiment a bit. Remember, the
calling language may not have the notion of Exceptions, or at least not be as rigorous as
Java in the rules as to how exceptions must be handled.

Incontro CCR - 10.12.2008 M.Gulmini
15

Example: An RCMS Exception

package rcms.fm.fw.service.command;

import java.io.Serializable;
import java.rmi.RemoteException;

/**
* Command Service Exception class.

• All RCMS service exceptions extend java.rmi.RemoteException
– Reduce interoperability problems

* Command Service Exception class.
*
*/
public class CommandServiceException extends RemoteException implements Serializable {
…

public CommandServiceException() {}
public CommandServiceException(String s) {…}
public CommandServiceException(String s, Throwable ex) {…}

public Throwable getException() {return exception;}
public void setException(Throwable exception) {…}
public String getMsg() {return msg;}

public void setMsg(String msg) {
this.msg = msg;

}
}

Incontro CCR - 10.12.2008 M.Gulmini
16

Development Environment

• Eclipse Integrated Development Environment (www.eclipse.org)

• Eclipse Plugins (http://www.eclipseplugincentral.com/)
– Sysdeo Tomcat Launcher plugin
– Lomboz plugin (J2EE applications)

• Xdoclet to ease the deployment of the services• Xdoclet to ease the deployment of the services
– http://xdoclet.sourceforge.net
– Mainly in the first phase we needed to change often the service API.
– Axis deployment descriptors automatically generated

• XDoclet is an open source code generation engine. It enables Attribute-Oriented
Programming for java. In short, this means that you can add more significance to
your code by adding meta data (attributes) to your java sources. This is done in
special JavaDoc tags.

Incontro CCR - 10.12.2008 M.Gulmini
17

Example: an Axis service
package rcms.fm.ws.command;
import javax.xml.rpc.ServiceException;
…
/**
* CommandService Web Service.
*
* @axis.service name="CommandService" scope="Applicat ion“ enable-remote-admin="true"
*
* @axis.bean name="CommandServiceException" package ="rcms.fm.fw.service.command"
* @axis.bean name="StateMachineBean“ package="rcms. statemachine.definition.bean"
…
*/
public class FMCommand implements ServiceLifecycle,Com mandServiceIF {

private CommandService commandService = null ;private CommandService commandService = null ;

/**
* Synchronous commad execution….
* …
* @axis.method
* @param command the command to execute
* @param uriPath the URI identifying a resource
* @return the state after command execution
* @throws CommandServiceException
*/
public StateBean execute(String[] uriPath, CommandBe an command) throws

CommandServiceException {
…
}

…
}

Incontro CCR - 10.12.2008 M.Gulmini
18

Ant and XDoclet

<!--Build file for deploying and undeploying RCMS web services into axis and make stubs.
This file is only used by RCMS developers.-->

<project name="rcms-parameter-deploy" default="axis-deploy" basedir=".">
<property file="build.properties" />

…
<!-- Generate the axis deployment descriptor -->
<target name="axisdoclet ">

<taskdef name="templatedoclet" classname="xdoclet.DocletTask"
classpathref="xdoclet.class.path" />

<templatedoclet destdir="${output}" verbose="1">
<template templateFile="${deploy.xdoclet.template}" destinationFile="${deploy.wsdd}">

<configParam name="Xmlencoding" value="utf-8" />
</template></template>

</templatedoclet>
</target>
<!-- Generate the axis undeployment descriptor -->

…
<!-- Deploy the services into axis engine -->
<target name="axis-deploy " depends="axisdoclet,axisdoclet-undeploy">

<taskdef resource="axis-tasks.properties" classpathref="axis.classpath" />
<axis-admin port="${target.port}" hostname="${target.server}" failonerror="true"

servletpath="${target.appname}/services/AdminService" debug="true" xmlfile="${output}${deploy.wsdd}" />
</target>
<!-- Undeploy the services into axis -->

…
<!-- Generate the stubs -->

…
</project>

Incontro CCR - 10.12.2008 M.Gulmini
19

Example: Axis deployment descriptors
<?xml version="1.0" encoding="utf-8"?>
<deployment xmlns=http://xml.apache.org/axis/wsdd/ xmlns:java=http://xml.apache.org/axis/wsdd/providers/java

xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance">
<service name="CommandService “ provider="java:RPC">

<parameter name="className" value="rcms.fm.ws.command.FMCommand" />
<!-- check if remoteAdmin param is present -->
<parameter name="enableRemoteAdmin" value="true" />
<parameter name="allowedMethods"

value="execute getState getUpdatedState getStateTree getUpdatedStateTree
getStateMachine getStateList "/>

<parameter name="scope" value="Application"/>

<beanMapping qname="ns:CommandServiceException" (Axis documentation)
xmlns:ns="urn:FMCommand"
languageSpecificType="java:rcms.fm.fw.service.command.CommandServiceException"

/>/>
<beanMapping qname="ns:StateMachineBean"

xmlns:ns="urn:FMCommand"
languageSpecificType="java:rcms.statemachine.definition.bean.StateMachineBean"

/>
…

</service>
</deployment>

<?xml version="1.0" encoding="utf-8"?>
<undeployment xmlns=http://xml.apache.org/axis/wsdd/ xmlns:java=http://xml.apache.org/axis/wsdd/providers/java
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance">

<service name="CommandService ">
</service>

</undeployment>

Incontro CCR - 10.12.2008 M.Gulmini
20

The GRIDCC Project

http://www.gridcc.org

Incontro CCR - 10.12.2008 M.Gulmini
21

RCMS and GRIDCC

• It is a 3-years project started in September 2004

The Grid enabled Remote Instrumentation with Distributed Control and
Computation (GRIDCC) is a project funded by the European
community, aimed to provide access to and control of distributed
complex instrumentation.

CMS is one of the main applications for the GRIDCC project .

The RCMS software is the core of the
Instrument Element of the GRIDCC.

Incontro CCR - 10.12.2008 M.Gulmini
22

The RCMS software was developed in
closed collaboration with the GRIDCC.

Instrument Element (IE): the basic idea

Computing
Element

Computing
Element

Instrument
Element

Computing
Element

Instrument
Element
Instrument
Element

Virtual
Control
Room

Virtual
Control

Room

Storage
Elements

Storage
Elements

ElementElement

Storage
Element

Existing
Grid Infrastructures

Web Service
Interface

Execution
Service

Incontro CCR - 10.12.2008 M.Gulmini
23

(Some) GRIDCC Developments

• Virtual Control Room (VCR)
• Instrument Element web service façade

– WS-I compliance
• Instrument Reservation (Web) Service
• Problem Solver (Web) Service
• Integration with GRID (EGEE) components
• IE Security
• Quality of Service• Quality of Service
• Automatic discovery of GRIDCC components (P2P approach)
• Grid on a CHIP

– light version of IE to facilitate its adoption in the embedded
systems, including the FPGA based – Axis standalone

• Tiny IE : light version of IE
– Easier software deployment and installation

• JMS (Java Messaging System) experience
– When the web services performance is not enough…
– RMM – JMS (GRIDCC IBM)

Incontro CCR - 10.12.2008 M.Gulmini
24

In
st

ru
m

en
ta

tio
n

C
on

to
rl

Data/Info
Pubblishing

Custom (JMS,)

I’m
here

DiscoveryInstrument Reservation
Service (IRS)

BDII
GlueSchema extension

Secure
RMM-JMS

DB Store
File Store
Custom
Store

Final Release: Instrument Element

In
st

ru
m

en
ta

tio
n

C
on

to
rl

G
R

ID
 A

cc
es

s

Instruments Access

Instrument
Element

W
eb

 S
er

vi
ce

S
R

M
/G

R
ID

F
T

P

Custom Instrument Quality of Service(IQS)

WS-I Compliant
GSI Security
Kerberos Security

SRM-2.2
StoRM
BestMan
GSI Security

Incontro CCR - 10.12.2008 M.Gulmini
25

Service Invocation with 100 Input Tags

200

400

600

800

1000

1200

1400

1600

In
vo

ca
tio

n
pe

r
S

ec
on

d

Servlet

Servlet RPC

Servlet RPCXML

Web Services

Client/Server communications type:

Clients

Server

Web Services Performance

0

1 3 5 7 9 11 13 15

Number of Clients

In
vo

ca
tio

n
pe

r
S

ec
on

d

The hardware and Software:
•Application Server: Dual Xeon1.8 GHz, with 1.5 GB R AM, Ethernet 1
Gbps

Red Hat Linux Advanced Server 2.1. Tomcat 5.0.28 Axis

•Clients: 15 Pentium III 600 MHz, with 256 MB RAM, Et hernet 1 Gbps
Linux Red Hat 7.0. java 1.4 application

Client/Server communications type:
• Simple HTTP
• SOAP + XML over HTTP
• Web Service

Incontro CCR - 10.12.2008 M.Gulmini
26

When the WS performance is not enough…

• CMS DAQ Monitoring has been implemented in XDAQ (C+ +)
– O(106) monitorables per second
– XML communication protocol (WS-Eventing standard) at the beginning
– Binary protocol now

• GRIDCC exploits JMS (Java Message System)
– RMM – JMS (IBM GRIDCC)

Incontro CCR - 10.12.2008 M.Gulmini
27

The Agata Experiment

http://www-win.gsi.de/agata/

Incontro CCR - 10.12.2008 M.Gulmini
28

Agata Project

• The aim of Agata project is to develop, build and employ an Advanced
GAmma Tracking Array, AGATA, for nuclear spectroscopy.

• AGATA is being realized within a European collaboration and is
intended to be employed in experimental campaigns at radioactive and
stable beam facilities in Europe.

– First campaign: Legnaro
– Installation at LNL in

progress
– First data taking test next

week

Incontro CCR - 10.12.2008 M.Gulmini
29

Agata DAQ

Run Control and
Monitor

Slow Control

Front-end electronic
and pre-processing

Pulse Shape Analysis

Histogrammer

Incontro CCR - 10.12.2008 M.Gulmini 30

Monitor
System Event Builder

Tracking

Storage

On-line
Data analysis

The collaboration:
• Orsay (main data flow)
• Daresbury (slow control)
• Cracov (GUIs)
• Legnaro (Run Control)

Agata DAQ & Run Control

• The DAQ is developed in Ada programming language
– Narval (http://narval.in2p3.fr/)

• Orsay team (IN2P3)

• LNL is developing the “Run Control”

• GRIDCC Instrument Element software is used
– No major server side developments so far

• Porting to Java 6 and Tomcat 6

– Concentrate on “custom” control and monitor

• Wish (To Do) list
– Use Modern Web Services standards and tools

• JAX-WS APIs
• JAXB binding
• Axis 2

Incontro CCR - 10.12.2008 M.Gulmini
31

Agata Run Control Structure

Top Manager

Resource
Service

Logging
Service

Run Control Services

Run Control

WSDL Facade

GUI

Grid
Manager

Storage
Manager

Slow
Manager

Ancillary
Manager

Narval
Manager

Ancillary
Manager

Slow
Manager

DAQ
Narval

Prisma
DAQ

Slow
Control

Disk
Manager

Grid
Data MoverSlow

Control

Incontro CCR - 10.12.2008 M.Gulmini
32

Web Services

Client side Development

Incontro CCR - 10.12.2008 M.Gulmini
33

WSDL: Axis Java client (I)

• RCMS, GRIDCC and Agata web applications use Axis stubs
– They communicate with other Java Axis Web Services
– For instance CMS Function Managers (FMs) retrieve the

configuration from the Resource Service WS, send commands to
other FMs, receive state change notifications from other FMs

• Agata DAQ is developed in Narval (Ada programming language)
– Narval distributed system provides a WSDL for control and

monitoring purposes (Generated by Ada2WSDL)monitoring purposes (Generated by Ada2WSDL)
– Axis Java stubs were generated

• no particular problems

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="narval_aws"
…

<!-- Generated by AWS/Ada2WSDL v1.1
on Wednesday 06 February 2008 at 10:05:01 -->

<types>…
</types>…
<message name="Send_Command_With_Arguments_Request">

<part name="Command" type="xsd:string"/>
<part name="Arguments" type="n1:String_Array"/>

</message>

<message name="Send_Command_With_Arguments_Response">
<part name="Result" type="xsd:string"/>

</message>
…

Incontro CCR - 10.12.2008 M.Gulmini
34

WSDL: Axis Java client (II)

• Agata: Slow Control WSDL (Daresbury)
– Defined in C language

• int Do-Reset (int *rc);
int Do-SetUp (int *rc);
int Do-Stop (int *rc);
int Do-Go (int *rc);
…

– WSDL generated using gSOAP
– WSDL implemented in Tcl for “digitizer electronics” (Daresbury)

• Tcl Web Server : http://www.tcl.tk/software/tclhttpd/• Tcl Web Server : http://www.tcl.tk/software/tclhttpd/

– WSDL implemented in Ada (ENX) for “segment and core
mezzanines” (http://enx.in2p3.fr/)

• Run Control Java/Axis stubs generated (Legnaro)
– First tests: no problems encountered

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="DataAcquisitionControlServer“ targetNamespace="http://npg.dl.ac.uk:8015/DataAcquisitionControl.wsdl"

<message name="Get-StateRequest">
</message>

<message name="Get-StateResponse">
<part name="ResponseCode" type="xsd:int"/>
<part name="Code" type="xsd:int"/>
<part name="State" type="xsd:string"/>
<part name="Reason" type="xsd:string"/>
</message>
…Incontro CCR - 10.12.2008 M.Gulmini

35

WSDL: XDAQ Client (CMS)

• CMS XDAQ C++ framework does not provide WSDL support
• But it fully supports SOAP (Xoap library)

• Communication with RCMS web services is achieved by
libraries that construct the proper SOAP messages
– Used Mainly for asynchronous notifications (state changes, errors)

• When stub generation from the WSDL is not available
– SOAP messages can/must be constructed by hand– SOAP messages can/must be constructed by hand
– It works fine
– Complexity depends on WSDL complexity

In the class constructor:

rcmsStateNotifier_(logger_,getApplicationDescriptor(),getApplicationContext())

Then:
try

{
rcmsStateNotifier_.stateChanged("Error", xcept::stdformat_exception_history(exception));

}
catch(xcept::Exception &e)
{

LOG4CPLUS_ERROR(logger_, "Failed to notify state change: "
<< xcept::stdformat_exception_history(e));

}

Incontro CCR - 10.12.2008 M.Gulmini
36

WSDL: Perl Client

• WSDL and SOAP support in Perl is provided by SOAP::Lite
package

• Collection of Perl modules which provides a simple and lightweight
interface to the Simple Object Access Protocol

• CERN Linux SLC 3.0.4 packages:
– perl-MIME-Lite (3.01-1), perl-MailTools (1.62-1), perl-SOAP-Lite

(0.55-3), perl-TimeDate (2.22-1)

– DII (Dynamic Invocation Interface) approach– DII (Dynamic Invocation Interface) approach

• Widely Used in CMS
• Scripts to stress the control system
• Reproduce bugs
• Performance measurements

• Also used inside Labview for Mac (see later)

Incontro CCR - 10.12.2008 M.Gulmini
37

Perl Script : example

#!/usr/bin/perl
getStateFM.pl
Author: Andrea Petrucci
date: 23/10/2005

use strict;
use SOAP::Lite;

my $WSDLCommandService="http://pccms143.cern.ch:8080/rcms/services/CommandService?wsdl";
my $NSCommandService = "urn:FMCommand";
my $HOSTCommandService = "http://pccms143.cern.ch:8080/rcms/services/CommandService";

my $CommandService = SOAP::Lite
->readable(1)
->xmlschema('http://www.w3.org/2001/XMLSchema')->xmlschema('http://www.w3.org/2001/XMLSchema')
->on_action(sub { return '""';})
->proxy($HOSTCommandService)

->uri($NSCommandService);

my $method = SOAP::Data->name('getState')
->prefix('ns1')
->uri($NSCommandService);

my $result = $CommandService->call($method => ($uri));
if ($result->fault){

print join ';',
$result->faultcode,
$result->faultstring;

}else {
my $stateBean = $result->valueof('//getStateResponse/getStateReturn');
print "$stateBean->{'stateString'}\n";

}

Incontro CCR - 10.12.2008 M.Gulmini
38

WSDL Clients: GUIs for Run Control

JSP GUI
(RCMS Framework)

Two basic ways :
• web service compliant clients
• browser via a JSP GUI

Function
Manager

Perl

C ++

Clients Server

IMS

Portal

Web Service

Manager

Resource
Service

. N
E

T

Visual Basic

Visual C++

Java

SOAP/HTTP

Incontro CCR - 10.12.2008 M.Gulmini
39

JSP CMS Run Control GUIs

1) RCMS GUI
2) Function Manager Level Zero GUI

3) FED and TTS GUI

Incontro CCR - 10.12.2008 M.Gulmini
40

• JSP (Java Server Pages)
– Server side code generating HTML pages
– Use Java/Axis stubs
– Javascript and AJAX technology

Java Applet GUI example

Incontro CCR - 10.12.2008 M.Gulmini
41

• CMS test beams and production centers

LabView GUI

Incontro CCR - 10.12.2008 M.Gulmini
42

• WSDL client tests both with Mac and Windows
• Windows: .NET support (OK)

• Some troubles with complex data structures
• Mac: (KO)

• Perl scripting language as a workaround

GRIDCC VCR – Portal and Portlet

Incontro CCR - 10.12.2008 M.Gulmini
43

Agata GUI (Cracov)

Incontro CCR - 10.12.2008 M.Gulmini
44

• Prototype available, Developed in C++, Qt based
• Communicates to the Agata Run Control through the GRIDCC

WSDL facade
• Agata Week November 2007:

– “Lucky the WSDL files given to me are fully compatibile with my
gSOAP standard” (Jurek Grebosz)

Considerations

• Web Services are a wonderful paradigm for…
– Interoperation of software running on different platforms and

developed with different programming languages
– Quick development of clients

• Allow to concentrate on the business part of the application

• Many many useful “Web Services tools” available• Many many useful “Web Services tools” available

• Suitable for “online” systems when performance is not a big
issue
– Run Control systems

Incontro CCR - 10.12.2008 M.Gulmini
45

Questions

Incontro CCR - 10.12.2008 M.Gulmini
46

People

• List of people working on the contents of this presentation (not
exhaustive, not ordered):

– Michele Gulmini
– Gaetano Maron
– Pietro Molini
– Andrea Petrucci
– Alexander Oh– Alexander Oh
– Francesco Lelli
– Eric Frizziero
– Sergio Traldi
– Luigi Zangrando
– Silvano Squizzato

Incontro CCR - 10.12.2008 M.Gulmini
47

SPARE SLIDES

JAX-RPC

JAX-RPC provides an easy to develop programming model for development of SOAP based
Web services.

The figure elaborates the normal Web service invocation architecture for the synchronous
request-response mode :

• The client uses runtime libraries to serialize Java objects to a SOAP message and sends it
to the Web service end point, using HTTP transport.

• As the Web service side that is deployed on Apache Tomcat receives this request, the
service-side JAX-RPC runtime deserializes the SOAP message in to Java types and
invokes the method on the Web service and in turn makes a call to Application 2.

• The Web service, after processing the request, sends response back to the client in a • The Web service, after processing the request, sends response back to the client in a
similar.

10.12.2008 M.Gulmini 49

References

• Web service : Web Services Architecture (http://www.w3.org/TR/ws-arch/)
• WSDL : Web Service Description Language (http://www.w3.org/TR/wsdl)

Basic Profile Version 1.0 (http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-
16.html)

• Apache Tomcat : The Apache Jakarta Tomcat 5 Servlet/JSP Container
(http://tomcat.apache.org/tomcat-5.0-doc/index.html)

• Apache Axis : Axis User’s Guide (http://ws.apache.org/axis/java/user-guide.html)

• J2ee : Java 2 Platform, Enterprise Edition (http://java.sun.com/j2ee/1.4/)

• JAX-RPC : Java API for XML-Based RPC (http://java.sun.com/webservices/jaxrpc/index.jsp) • JAX-RPC : Java API for XML-Based RPC (http://java.sun.com/webservices/jaxrpc/index.jsp)

10.12.2008 M.Gulmini
50

The Grid Technologies to extend the limit of a
single computer (center)

Grid Gateway

ComputingComputing
ElementElement

StorageStorage
ElementElement

10.12.2008 M.Gulmini
51

gies

Grid
Technolo
gies

User Interface
ComputingComputing
ElementElement

ComputingComputing
ElementElement

Extending the Grid Concepts

Grid

Grid Gateway

10.12.2008

Grid
Technolo
gies

Satellite views
to monitor the volcano

Control and Monitor Room
To model calculations
and disaster predictions

Terrestrial probes to monitor
The volcano activities

– SECURITY SERVICE
• login and user account

management;

– RESOURCE SERVICE (RS)
• information about DAQ

resources and partitions;

RCMS Services

– INFORMATION AND MONITOR
SERVICE (IMS)

• Collects messages and monitor
data; distributes them to the
subscribers;

– JOB CONTROL
• Starts, monitors and stops the

software elements of RCMS,
including the DAQ components;

10.12.2008 M.Gulmini53

The GRIDCC Architecture

Instruments Grid Computational Grid

CE

CE

SE
WMS

10.12.2008 M.Gulmini
54

F. Lelli, 3rd (final) GRIDCC Annual Review, London, 15 October 2006Cooperative Environment

Instrument
Element

Virtual
Control
Room

Execution
Service

Workflow Mng System

Agreement Service

First First collisioncollision beam configuration. Sept 08beam configuration. Sept 08

Incontro CCR - 10.12.2008 M.Gulmini
55

Web Services

Instrument Element

Any Protocol or
physical connection

Sensor
Network

Instrument

Grid

ComputingComputing
ElementElement

StorageStorage
ElementElement

ComputingComputing InstrumentInstrument

Instrument Element Requirements

Instrument
ComputingComputing

ElementElement
InstrumentInstrument
ElementElement

W

E
F

A

B

C

D

1: Provide a uniform access to
the physical devices

2: Allow a standard grid access
to the instruments

3: Allow the cooperation
between different instruments
that belong to different VOs

Incontro CCR - 10.12.2008 M.Gulmini
56

• Web Service compliant (WS-I)

• Tomcat + Axis (and Java) and Axis standalone are the main technologies of
the IE

• All the services are deployed on a single or multiple instances of Tomcat,
according to the needs of the application

• Message oriented middleware (Pub/Sub) is based on the Java Messaging

GRIDCC – IE technologies

• Message oriented middleware (Pub/Sub) is based on the Java Messaging
System (JMS). The following implementations are used in the project

– RMM - JMS (GridCC IBM)

• MySQL and Oracle are used as Data Base for the RS

• STORM vers. 1.2 is the used SE that exposes a SRM interface version 2.2

10.12.2008 M.Gulmini
57

