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Cosmic Ray Spectrum

Each energy range addresses
different physics:
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@ 1912: Discovery of Cosmic Rays by Victor Hess in free balloon flight

@ 1930’s: Extensive air showers (EAS) were discovered by Pierre Victor
Auger
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@ 1912: Discovery of Cosmic Rays by Victor Hess in free balloon flight

@ 1930’s: Extensive air showers (EAS) were discovered by Pierre Victor
Auger

@ 1965: Penzias and Wilson discover the CMBR

@ 1966: Greisen, Zatsepin and Kuzmin point out that if CR are protons
or nuclei Ecg < 4 x 10%%eV (GZK cutoff)!
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@ 1912: Discovery of Cosmic Rays by Victor Hess in free balloon flight
@ 1930’s: Extensive air showers (EAS) were discovered by Pierre Victor
Auger

1965: Penzias and Wilson discover the CMBR

@ 1966: Greisen, Zatsepin and Kuzmin point out that if CR are protons
or nuclei Ecg < 4 x 10%%eV (GZK cutoff)!

1984-2003: AGASA, 111 scintillators in 100 km2- NO GZK..!
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@ 1912: Discovery of Cosmic Rays by Victor Hess in free balloon flight

@ 1930’s: Extensive air showers (EAS) were discovered by Pierre Victor
Auger

@ 1965: Penzias and Wilson discover the CMBR

@ 1966: Greisen, Zatsepin and Kuzmin point out that if CR are protons
or nuclei Ecg < 4 x 10%%eV (GZK cutoff)!

@ 1984-2003: AGASA, 111 scintillators in 100 km2- NO GZK..!

@ 1997-2006: High Res. Flys Eye, 2 fluorescence telescopes - GZK
observed.

@ 2004-now: Pierre Auger Observatory: Hybrid observatory in southern
hemisphere, cutoff confirmed. Data favors heavy nuclei primaries

@ 2008-now: Telescope Array Experiment: Hybrid observatory in
northern hemisphere - cutoff confirmed. Consistent with proton or
light nuclei primaries
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UHECR Observation Techniques

Arrays of surface detectors

(SD)
q core ~(50-100) m Detects particles of a EAS at

(observed by FD)
- the ground level by an array of
Cherenkov detectors with the

\ e spacing about 1 km

\ “3"’ Fluorescence detectors (FD)
- Detects UV emission caused

by fluorescence of atmospheric

N molecules which are excited

by charged particles of the
shower.

SD: ~1000 m
between stations
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UHECR Observation Techniques

‘Arrays of surface detectors (SD) ‘ ’ Fluorescence detectors (FD) ‘
@ Observe mostly the @ See the central core
periferic part of 2D slice o Observe longuitudinal
of the shower development of a shower
@ Determine lateral @ Sensitive to the electron
distribution function component only

(LDF) of the particle

o @ Operates on clear
density in the shower. P

moonless nights only
@ Observe electromagnetic (roughly, 10% of time)

and muon component

@ Works independently of
the weather conditions
and time of the day

Oleg Kalashev (INR RAS) UHECR and their secondary signals January 29, 2015 6 / 60



UHECR Observation Techniques

@ Volcano Ranch o Fly's Eye o Pierre Auger

@ Haverah Park @ HiRes Fly's Eye Observatory

o Yakutsk @ Telescope Array
o AGASA
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Experimental progress

Exposure for E > 10'%eV
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Principal observables

© Energy

@ Arrival direction

© The type of the primary particle
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Principal observables

© Energy
o Reconstructed indirectly, model dependent
o /S ~ 10 —100TeV — extrapolation needed
e statistical error of ~ 15 — 20%
e systematic uncertainty of ~ 25%

@ Arrival direction

© The type of the primary particle
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Principal observables

© Energy
o Reconstructed indirectly, model dependent
o /S ~ 10 —100TeV — extrapolation needed
e statistical error of ~ 15 — 20%
e systematic uncertainty of ~ 25%
@ Arrival direction
Least model dependent, pure geometrical reconstruction
e SD: Using the trigger times of individual detectors
e FD: Timing info is needed unless in stereo mode
o Precision decreases with the growth of the effective area (currently
~ 1.5°, for HiRes ~ 0.6°)
© The type of the primary particle
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Principal observables

© Energy
o Reconstructed indirectly, model dependent
o /S ~ 10 —100TeV — extrapolation needed
o statistical error of ~ 15 — 20%
e systematic uncertainty of ~ 25%
@ Arrival direction
Least model dependent, pure geometrical reconstruction
e SD: Using the trigger times of individual detectors
e FD: Timing info is needed unless in stereo mode
o Precision decreases with the growth of the effective area (currently
~ 1.5°, for HiRes ~ 0.6°)
© The type of the primary particle
e Fluctuations and Similarities — Practically impossible for individual
event
o Strongly model dependent study of EAS properties
e SD: Signal rise time, muon and electromagnetic component, front
shape
e FD: Depth of the maximal shower development
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Energy Spectrum

@ Knee at E ~ PeV
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Arrival Directions

Puzzles to be solved

@ No bright spots of few degree angular size (expected for protons with
E 2 Eczk)
o If protons, high density of sources p > 10~*Mpc—3. Hard to explain
but not impossible (see e.g. O.K. et al. Phys.Rev. D86)
@ Auger CenA excess and TA ~ 20° hot spot for E > 57EeV (JCAP 1106
(2011);Astrophys.J. 790 (2014))
o No clustering at lower energies E,,./Z: If primaries are heavy nuclei,
narrow composition?

o If primaries are protons from Cen A EGMF must be high:
B>2x1078G

Oleg Kalashev (INR RAS) UHECR and their secondary signals January 29, 2015 11 / 60



Composition study

Observables

Experiment detector Observable
HiRes fluorescence stereo Xuax
Pierre Auger fluorescence + SD Xuax
(hybrid)
Telescope Array stereo Xuax
Telescope Array hybrid Xuax
Yakutsk muon p,.(1000)
Pierre Auger SD Xiax
Pierre Auger SD risetime asymmetry

SD — surface detector

Xuax — depth of the shower maximum

Xiyax — muon production depth

risetime — time from 10% to 50% for the total integrated signal
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Composition study

Flourescence Detector: Longitudinal Shower Profiles

Detection of fluorescence light as a function of slant depth  Xax
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Composition study

Light and heavy nuclei
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Composition study

Light and heavy nuclei
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Composition study

Light and heavy nuclei. Observations
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Composition study

Light or heavy nuclei

light HEAVY

Experiment:
HiRes Auger
TA Yakutsk
Theory:
nuclei abundance and survival nuclei are accelerated to higher
in cosmic accelerators are energies than protons
questionable
o(Xuax) data indicate sharp density of sources;
composition change non-observation of clustering
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Composition study

Photon identification with EAS
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@ Poor muon content

e No UHE ~
identified so far.
Strong limits (see
below)
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UHE Neutrino

Search with Pierre Auger Observatory

»_down-going v selected as inclined

proton or nuglei .
-------------- N e e showers with large
EM component )

EM component (time

spread of SD signals)
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sE
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UHECR source models

@ Top-Down (decay or annihilation of exotic particles)

@ Bottom-Up (acceleration of charged particles)
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UHECR source models

@ Top-Down (decay or annihilation of exotic particles)

o Topological Defects (Hill 1983; Berezinky, Vilenkin 1997)
e SHDM (Berezinsky et.al. 1997; Kuzmin, Rubakov 1997; Birkel, Sarkar
1998)

o Z-bursts (Fargion, Mele, Salis-1999; Weiler -1999)
o UHECR are mostly v and v (see e.g. O.K. et al 2009)

@ Bottom-Up (acceleration of charged particles)
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UHECR source models

@ Top-Down (decay or annihilation of exotic particles) disfavoured

o Topological Defects (Hill 1983; Berezinky, Vilenkin 1997)
e SHDM (Berezinsky et.al. 1997; Kuzmin, Rubakov 1997; Birkel, Sarkar
1998)

o Z-bursts (Fargion, Mele, Salis-1999; Weiler -1999)

o UHECR are mostly v and v (see e.g. O.K. et al 2009)
@ Bottom-Up (acceleration of charged particles)

e Proton primaries

e Mixed composition primaries
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Acceleration of cosmic rays

Conditions to be fulfilled by source candidates

@ Geometry: accelerated particle should be kept inside the source
enough time (Hillas criterion) E < gBR

© Radiation and interaction losses: energy lost by a particle should
not exceed the energy gain

© Emissivity: total number (density) and power of sources should be
able to provide the observed UHECR flux

@ Accompanying radiation: of photons, neutrinos and low-energy
cosmic rays should not exceed the observed fluxes, both for a given
source and for the diffuse background
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Sources of UHECR

Maximal energy, Hillas criterion and radiation losses

. dE* dE—
Emax = mln{EH, E/OSS}! Where T E:E/oss = _T E:E/oss
E. = gBR,
dE x qB

see e.g. Ptitsyna, Troitsky 2010

@ diffusive acceleration (shock waves) Ejss (%)4

@ inductive acceleration with synchrotron-dominated losses (AGN jets)
Eloss o ZATjQ

© inductive acceleration with curvature-dominated Iosses (immediate

vicinity of neutron stars and black holes) Ejss 21/4
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Attenuation of UHECR

Main attenuation channels

@ Nuclei
o Ay, — AN
o Ay, = Am..
o Ay, — Aete~
@ Protons and neutrons
° N’}/b — N'r..

’ p,n
° py, — pete”
e N — pe Ve oy
@ Electron-photon cascade
e eYp — €Y

o Yy — ete”
e e synchrotron losses

Oleg Kalashev (INR RAS) UHECR and their secondary signals January 29, 2015 23 / 60



Attenuation Lengths

dotted - IRBKKStg er et al. 2006
solid - IRB Kneiske'et al. 2010
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Attenuation of UHECR

Deflection

@ Deflections in galactic magnetic field for particles crossing disk:
20 100EeV B
= ~25°7F5

E  3uG
o Deflections in extragalactic magnetic field (EGMF):

AO 0.4° 100EeV B L Acor
zZ ~ 7 E  0.1nG 10Mpc

Current observational limits on EGMF strength B and correlation
length Aeor®:

10716 < B <107°G
Detailed simulations 2 show that EGMF has effect on UHECR
spectrum if B > 1071°G (assuming Acor = 1Mpc)

1for review see R. Durrer and A. Neronov, Astron. Astrophys. Rev. 21, 62 (2013)
2
V. Berezinsky and A. Z. Gazizov, Astrophys. J. 669, 684 (2007)
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Attenuation of UHECR

Numerical simulations

e Continuous energy loss approximation (e.g. Waxman 1995,
Beresinsky et al. 2002)

o Fastest, not very accurate around cut-off, fluctuations disregarded

@ Solution of transport equations (e.g. Yoshida et al. 1993; O.K. et al.
2003)

o Relatively fast and precise for homogeneous source distribution, no
deflections.

e Monte-Carlo (e.g. Allard et al. 2005; Aloisio et al. 2012; Kampert et
al. 2013)

o Relatively slow, good for simulations of propagation in strong magnetic
fields
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Phenomenological source models

Injection spectrum of nucleus with charge Z and atomic mass A:
QA(E, z) o< caAE™*N(z) with Epax a4 = Emax,p X (A, Z)
Evolution either specific (AGN, SFR, etc.) or generic N(z) o< (1 + z)3+™

Parameter Range Description

s l<s<27 Power of the Injection Spectrum
cA O<caxl Element abundances

Emax,p 5 — 1000EeV Maximal energy of protons

m O<m<6 Evolution factor

Zmin 0 < zmin < 0.01 nearest source redshift

Zmax 1< zpax <5 maximal source redshift
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Fitting spectrum of UHECR

" +HiRes ‘\ Kotera ét al. 2b10 - .
o Auger @ 'dip’ model (Berezinsky et al. 2006)
z o ankle is caused by py — ete
DR A o minimum of model parameters
20 : s=23-27
2 e proton dominated composition
- 528 @ 'Galactic composition’ (Allard et al. 2005)
——— pure iron, SFR evol., s= 20 \
1018.0 18.5 190 195 20‘0 20.5 ° max X ZV Emax,p Z 100Eev
log E [eV] . .
, ! . o Fit spectrum well assuming
v=2.8,z_ =4, m=0
. A = Y combined Auger 09 p — 22 _ 23
L i e proton dominated composition
3
e @ 'Disappointing’ model (Aloisio et al. 2009)
>
o
iy o Epax x Z, Emaxp_4—10EeV
W 107 E o Composition fine tuning is needed
(too many CNO) see e.g. Hooper et al.

107

2009; O.K. & Rubtsov 2012

E, eV

Oleg Kalashev (INR RAS) UHECR and their secondary signals January 29, 2015 28 / 60



Secondary signals from UHECR

@ Nuclei

o Ay, — AN

o A’Yb — A7T GZK fYIVIn

o Ay, — Aete™ n from photo-
@ Protons and neutrons disintegration

o Ny, — N'7.. v from
o pyp — pete” B —decay

e n— pe Ve
@ Electron-photon cascade 3
° eyp — ey Diffuse

o Yy, — etTe” ~-background
e e synchrotron losses
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UHE Neutrons

o Neutron decay (Mean travel distance 9.2E/[EeV]kpc) — only
galactic region accessible.

@ Proton-like EAS
@ No magnetic deflection: point-like excess expected

@ Search in Auger and TA (coincidence with Fermi bright Galactic
sources). No significant access found. Upper limits on neutron flux:
~ 0.07/(km?yr) at 1EeV
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UHE v and ~

Production

@ Typically produced as decay products in pp & p~ collisions, e.g.

Y i E’y/Ep ~ 0.1
+ — A(1232) — —|—710/
p b ( ) p + v

St T E,/E, ~0.05
e +v,+ v,

@ Also may be produced in Top-Down models (decay or annihilation of
exotic particles)
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UHE v and ~

Propagation: photons local; neutrinos all universe

5 . .
) i procucton @ Rectlinear propagation!
redshit @ v: no interaction except
3t ..
—~ photo-pion mixi ng
8_ o | production L.
2 " @ ~y: initiate EM cascade
o 1t
5
0 L
TeV phptons,
- GZK photons ]

12 14 16 18 20 22 24
Ig(E/eV)

URB purely known
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UHE v and ~

Examples (N. Nierstenhofer, A. van Vliet)
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UHE v and ~

Examples (Gelmini, O.K. et al.)

@ UHE ~ flux strongly depends on radio background and EGMF
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Photon flux limits

Current status reported on UHECR 2014 (M. Settimo et al.)
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Diffuse UHE Neutrino Limits

Current status reported on UHECR 2014 (M. Settimo et al.)

Single flavour === == |ceCube 2013 Cosmogenic v models
10° mmm— Auger 2013 00 mm=mas p, Fermi-LAT (Ahlers '10)
Fe, FRIl & SFR (Kampert '12)
p & mixed (Kotera '10)

=imimi ANITA-112010

E 10°® —+— IceCube 2014 astrophys. v B
2 —— ,Waxman-gahcéll ‘01
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Sl <%
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g S L - — v Auger/IceCube: complementary energy range |
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ANITA/Auger/RICE: 90% C.L. differential upper limits in bins of 0.5 in log1o(E)
IceCube arrows: 68% C.L. differential upper limits

IceCube Coll., Phys.Rev. D 88 (2013), 112008 ANITA Coll., Phys. Rev. D 85 (2012) 049901(E)
IceCube Coll., PRL 113 (2014) 101101 Pierre Auger Coll. ICRC 2013
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Isotropic -ray background (IGRB)

@ UHE v and e create EM cascade which develops down to eTe™
production threshold
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Isotropic -ray background (IGRB)

e UHE v and e create EM cascade which develops down to ete™
production threshold

@ Distant UHECR sources contribute the flux as in case of v
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Isotropic -ray background (IGRB)

e UHE v and e create EM cascade which develops down to ete™
production threshold

@ Distant UHECR sources contribute the flux as in case of v

@ Not sensitive to initial spectrum. Only sensitive to evolution and
power of sources
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Development of EM cascade

Propagated spectra from monochromatic  injection at z=1 (Berezinsky & O.K. 2015)
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information on initial UHE ~ spectrum is lost if Ej,; > 10'%eV
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Isotropic -ray background (IGRB)

e UHE v and e create EM cascade which develops down to ete™
production threshold

@ Distant UHECR sources contribute the flux as in case of v

@ Not sensitive to initial spectrum. Only sensitive to evolution and
power of sources
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Isotropic -ray background (IGRB)

e UHE v and e create EM cascade which develops down to ete™
production threshold

Distant UHECR sources contribute the flux as in case of v

o Not sensitive to initial spectrum. Only sensitive to evolution and
power of sources

Equal or higher contribution from UHECR via N+~ — N+ ete .
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Example

ntribution of m and ete™ production to IGRB (O.K. et. al Phys.Rev.D79)
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Attenuation Lengths

dotted - IRBKKStg er et al. 2006
solid - IRB Kneiske'et al. 2010
%o 10000
10000 | 4
h M_,,a—r*’ 1000
4
1000 - j
100
100 | 4
10
ere- ——
- i —
& =
|mx;doe"" 1oooodet®
Tan,
- u....“ 'l;s.-n-.“..
10000 | L 10000 Fuy
1000 |- 1000
100 | N 100
10 10 |
ere- —— ore ——
Gisintegraton —— dsinegaion
E redshift —— . E lzdshm
Oleg Kalashev (INR RAS) UHECR and their secondary signals

+2

January 29, 2015 41




Isotropic -ray background (IGRB)

e UHE v and e create EM cascade which develops down to ete™
production threshold

@ Distant UHECR sources contribute the flux as in case of v

o Not sensitive to initial spectrum. Only sensitive to evolution and
power of sources

@ Equal or higher contribution from UHECR via N+~ — N +eTe™.

@ Smaller fluxes expected from nuclei.
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Isotropic -ray background (IGRB)

e UHE v and e create EM cascade which develops down to ete™
production threshold

@ Distant UHECR sources contribute the flux as in case of v

o Not sensitive to initial spectrum. Only sensitive to evolution and
power of sources

@ Equal or higher contribution from UHECR via N+~ — N +eTe™.
@ Smaller fluxes expected from nuclei.

@ Observed by FERMI LAT in the range 100MeV > E, > 800GeV
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Fermi ~-ray Space Telescope

Launched from Cape Canaveral Air
Station 11 June 2008

IGRB estimated between 100 MeV
and 820 GeV

(M. Ackermann et al. arXiv:1410.3696 [astro-ph.HE])

E2 dN/dE [MeV cm? s sr-1]
3

——&— Total EGB

AL S R ELL B R Ll
ol vl ol

105 —=— IGR8
| Resolved sources, Ibl>20°
[ [ | 16RB- Abdoetal. 2010
10—6 1 1 Il 1

Energy [MeV]
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IGRB power density. Ultimate limit on UHECR models

Berezinsky & 0.K. 2015

The shape of GeV — TeV spectrum doesn't depend on initial E, if E, 2 10%eV

6
. Inoue et al. ‘baseline’ 1 -
% 5.5 f Kneiske et al. ‘minimal’ ° Smgle parameter Qcas
S 5 Kneiskeetal bestfit —— power density injected to
© 4.5
PR EM cascade
= 35 )
s 3 @ Only moderate redshift
25
0.01 0.1 1 10 dependence'

Qcas in dip model

m'g 6
g —
g %
2 S 4
& ,\GJ 3 e
d °
= 2
1 2 3 4 5 S 1
Zmax 0
1 2 3
N(z) = (1 + z)3*+m

max
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Restricting UHECRs and cosmogenic neutrinos by diffuse ~

flux

V. S. Berezinsky and A. Y. Smirnov, Astrophys. Space Sci. 32, 461 (1975).

O. E. Kalashev, V. A. Kuzmin, D. V. Semikoz and G. Sigl, Phys. Rev. D 66, 063004 (2002)

M. Ahlers, L. A. Anchordoqui, M. C. Gonzalez-Garcia, F. Halzen and S. Sarkar, Astropart. Phys. 34, 106 (2010)
V. Berezinsky, A. Gazizov, M. Kachelriess and S. Ostapchenko, Phys. Lett. B 695, 13 (2011)

G. B. Gelmini, O. Kalashev and D. V. Semikoz, JCAP 1201, 044 (2012)

@ 'top-down’ models disfavored
@ 'dip’ models with strong evolution are constrained

@ So far IGRB estimate imposed more strict limits on UHECR models then
UHE v & ~, but situation changes
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UHECR spectrum cut-off exists
UHECR are not galactic (isotropy, no UHE neutrons)

°
°

o UHECR composition at highest energies unclear

@ Qa5 constrains models with primary p or high E, .
°

Proton source models allowed by .,s may be constrained by UHE ~
and v limits in near future

UHE ~ and v if observed will point to source
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Thank You
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Energy spectrum systematic uncertainties

Auger-TA working group report on UHECR 2014

Telescope Array

Auger

L S RS UL R LN RS R —
F Hybrid events from all the three E E
205E FD site events (BR/LR/MD) E =
20 E P
r D) | 1%}
e E 100f
319.5_— [] - =
u ]
g 19f T, E
E15.5i . —f
F ] 1488 Events
‘9:— B 10 8 A=0.19%0.004 EeV
1750 _: C B =1.024 +0.007
£ ] N | L Lo
N AR R L d 34567 10 20 3040 100
47 175 18 185 19 195 20 205 21 EFD [EeV]
SD, log, (E/eV)
Auger[%)] | Telescope Array [%]
Atmosphere 34-6.2 11
Detector 9.9 10
Reconstruction 6.5-5.6 9
Stability of the energy scale 5 -
Sub-total 13 17
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Anisotropy Study Summary

Auger-TA working group report on UHECR 2014
® Hotspot observed for TA events above 57 EeV. Post-trial probability of 4.0 (3.4) sigmas
for 6 years (5 years). (RA, dec) = (148.4,44.5) degrees
® Highest energy TA events show compatibility with LSS (2MASS as template)

®  No statistically significant correlation with AGNs from VCV observed

®  Auger events (>57 EeV) around CenA show maximum deviation from isotropy around 24
degrees

® HE events show compatibility with LSS tracers such as IR galaxies (2MRS) or AGNs
detected in X-rays (Swift-BAT).

® Correlation with AGNs with events up to June 201 | at the level of 33%, compared to |,
21% from an isotropic sky AUGER

®  Non-random phases over a broad energy range

® Combined sky maps above 10 EeV provide full sky coverage with great potential for large

scale anisotropy studies 13
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Radiation Losses

E,. =min{E, E, 1 E, —925x10%erz X 2
kpc G
Radiation losses criterion dE® dE®
dE® dt dt
g C1B = : R\ (B)
E,.=291x10"eV — (—_ (—_
diffusive acceleration k )
(shock wave etc.)
) 4
inductive acceleration with _dET E(]—‘,EZB2
synchrotron-dominated losses 4 3 m A /B \’”2
(jets of powerful active galaxies) [’m _1 64 X 10209[/ 7 L 771/2
Z\G)
_dED 2 q \"
) ) ) ) a3\ m 7 ’
inductive acceleration with 4/ R \”2 B \1/4
curvature-dominated losses E,,=123x10%eV ——| —. [=1 »"
(immediate vicinity of neutron stars and black holes) VA kpC } G }
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Transport equations

No(By) = ~Ny(Ey) [ den(e) [ du—p " (00n + o) +

, , i (dopx  dope
/dEN(E)/dene)/du (dE+dE +

/dE’ (E')/den(e)/dul_f"“d;;” + N, (E, )2‘” 7+ Qp(Ep)

6th(En) = _Nn(En)/dén(e)/dlul _Qﬁnugn,w +

1 _ﬂl:u‘ dU ™
/dE;Np(E;)/den(e)/d,u 5 L dg';l +

"N / 17ﬁ7'1/1d0'n,7r _ Mn _—1
/dE (E)/den(e)/d,u 5 R~ Nl o 4 Qu(l)
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Dip in UHECR spectrum

Modification factor n(E) = JJan((EE))
P

Jp(E) - all energy losses; Jgd(E) adiabatic losses only
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UHE Neutrons

Search with Auger and Telescope Array

Search for excess of CR events (proton-like) from discrete sources within the angular resolution.
Only galactic region accessible (Mean travel distance ~ 9.2 E/[EeV] kpc)

Southern Sky (dec. [-90°, +15°])
The Pierre Auger Coll., ApJ, 760 (2012) 148

Auger-SD data, Jan 2004 - Sept 2011

energy ranges: 1-2 EeV, 2-3 EeV, > 1 EeV, > 3 EeV
upper limits on flux and constrains on astrophysical
source models

Galactic & Target search performed
s— e G'b- The Pierre Auger Coll., ApdJ, 789 (2014) L34
0.0025 1/(km? yr) 0.035_~,
.

Northern Sky (dec. [0, 70°])

E>1EeV

Dec. (deg) (d)
TA-SD, May 2008 - May 2013

energy ranges: 0.5-1 EeV, 1-2 EeV, = 1 EeV, = 2 EeV

mean upper limits on neutron flux: ~ 0.07/(km2 yr) @ 1EeV

coincidence with 29 Fermi bright Galactic sources

The Telescope Array Coll., 1407.6145

180
RA. (deg)
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Fitting Auger Spectrum and Composition

0.K.&G.Rubtsov - Quarks 2012

° Binned maximum likelihood function is used for both spectrum and Xmax
distribution in each bin (X range is splitted onto N bins with roughly equal event
counts)

* Poisson probability of the observed event set is maximized

* Goodness of fit is calculated by randomly generating sets of hypothetical
experiments according to Poisson probabilities given by model.

N n;
V.
L(n: v) = i eV
(n; v) |Z| o e
Phenomenological source model:
F(E) = § :CAE_Q Emam,A = Emax,pf(A7 Z) 1<a<27

A
Free parameters: €A, Q, Emazp, AE/E,AX

Using mixture of p,He,N,Fe as primary source =~ A =1,4,14,56
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Fitting Auger Spectrum and Composition

0.K.&G.Rubtsov - Quarks 2012
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Fitting Auger Spectrum and Composition

0.K.&G.Rubtsov - Quarks 2012

Eyiw > 5EeV  P-value plots

26
24|

19 19.5 20 20.5 B 19 19.5 20 205 21

log(Emaz,p/eV) log(Emaz,p/eV)
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Fitting Auger Spectrum and Composition

0.K.&G.Rubtsov - Quarks 2012

We require GOF>0.05 for E>5EeV and maximize P fraction

mZ.TL(NA/NtOt)
Epaz X Z 0.05
Diffusive acc. A 4
with synchrotron Emaz X (—) 0.025
losses Z
F(E)=) caE™®
One-shot acc. A2 A
:ggg:synchrotron FEraw 7372 0.03 Ermaz,A = EBrmazpf(A, Z)
One-shot acc. A
: Eas < ——— 0.06 ca _Na -
ith it max . _ 1
Y;;secsurva ure Z1/4 a = pr(A/Z)a
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Development of EM cascade

Interaction lengths of e and ~
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information on initial UHE spectrum is lost
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Development of EM cascade

Berezinsky & O.K. 2015
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