Ultra-high energy cosmic rays and their secondary signals

Oleg Kalashev

Institute for Nuclear Research, Russian Academy of Sciences, Moscow

kalashev@inr.ac.ru

January 29, 2015

Overview

Introduction

- Observation Techniques
- Observables

2 Experimental Results

- Energy Spectrum
- Arrival Directions
- Composition study

3 Modeling UHECR

- Attenuation
- Phenomenological source models
- 4 Secondary signals from UHECR
 - Neutrons
 - UHE ν and γ
 - Isotropic γ -ray background

Summary

Cosmic Ray Spectrum

Each energy range addresses different physics:

- Solar modulation: $10^8 eV \le E \le 10^{11} eV$
- Galactic sources: $10^{11}eV \le E \lesssim 10^{18}?eV$
- Extragalactic sources: $E\gtrsim 10^{18} ? eV$

- 1912: Discovery of Cosmic Rays by Victor Hess in free balloon flight
- 1930's: Extensive air showers (EAS) were discovered by Pierre Victor Auger

- 1912: Discovery of Cosmic Rays by Victor Hess in free balloon flight
- 1930's: Extensive air showers (EAS) were discovered by Pierre Victor Auger
- 1965: Penzias and Wilson discover the CMBR
- 1966: Greisen, Zatsepin and Kuzmin point out that if CR are protons or nuclei $E_{CR} \lesssim 4 \times 10^{19} eV$ (GZK cutoff)!

- 1912: Discovery of Cosmic Rays by Victor Hess in free balloon flight
- 1930's: Extensive air showers (EAS) were discovered by Pierre Victor Auger
- 1965: Penzias and Wilson discover the CMBR
- 1966: Greisen, Zatsepin and Kuzmin point out that if CR are protons or nuclei $E_{CR} \lesssim 4 \times 10^{19} eV$ (GZK cutoff)!
- 1984-2003: AGASA, 111 scintillators in 100 km2- NO GZK..!

- 1912: Discovery of Cosmic Rays by Victor Hess in free balloon flight
- 1930's: Extensive air showers (EAS) were discovered by Pierre Victor Auger
- 1965: Penzias and Wilson discover the CMBR
- 1966: Greisen, Zatsepin and Kuzmin point out that if CR are protons or nuclei $E_{CR} \lesssim 4 \times 10^{19} eV$ (GZK cutoff)!
- 1984-2003: AGASA, 111 scintillators in 100 km2- NO GZK..!
- 1997-2006: High Res. Flys Eye, 2 fluorescence telescopes GZK observed.
- 2004-now: Pierre Auger Observatory: Hybrid observatory in southern hemisphere, cutoff confirmed. Data favors heavy nuclei primaries
- 2008-now: Telescope Array Experiment: Hybrid observatory in northern hemisphere cutoff confirmed. Consistent with proton or light nuclei primaries

UHECR Observation Techniques

Arrays of surface detectors (SD)

Detects particles of a EAS at the ground level by an array of Cherenkov detectors with the spacing about 1 km **Fluorescence detectors (FD)** Detects UV emission caused by fluorescence of atmospheric N molecules which are excited by charged particles of the shower.

Arrays of surface detectors (SD)

- Observe mostly the periferic part of 2D slice of the shower
- Determine lateral distribution function (LDF) of the particle density in the shower.
- Observe electromagnetic and muon component
- Works independently of the weather conditions and time of the day

Fluorescence detectors (FD)

- See the central core
- Observe longuitudinal development of a shower
- Sensitive to the electron component only
- Operates on clear moonless nights only (roughly, 10% of time)

SD

- Volcano Ranch
- Haverah Park
- Yakutsk
- AGASA

FD

- Fly's Eye
- HiRes Fly's Eye

Hybrid

- Pierre Auger Observatory
- Telescope Array

Experimental progress Exposure for $E > 10^{18} eV$

The type of the primary particle

- Energy
 - Reconstructed indirectly, model dependent
 - $\sqrt{S} \sim 10-100\,\text{TeV}
 ightarrow$ extrapolation needed
 - statistical error of $\sim 15-20\%$
 - systematic uncertainty of $\sim 25\%$
- 2 Arrival direction

The type of the primary particle

- Energy
 - Reconstructed indirectly, model dependent
 - $\sqrt{S} \sim 10-100\,\text{TeV}
 ightarrow$ extrapolation needed
 - statistical error of $\sim 15-20\%$
 - $\bullet\,$ systematic uncertainty of $\sim 25\%$
- Arrival direction
 - Least model dependent, pure geometrical reconstruction
 - SD: Using the trigger times of individual detectors
 - FD: Timing info is needed unless in stereo mode
 - Precision decreases with the growth of the effective area (currently $\sim 1.5^\circ,$ for HiRes $\sim 0.6^\circ)$
- The type of the primary particle

- Energy
 - Reconstructed indirectly, model dependent
 - $\sqrt{S} \sim 10 100 \, \text{TeV}
 ightarrow$ extrapolation needed
 - statistical error of $\sim 15-20\%$
 - $\bullet\,$ systematic uncertainty of $\sim 25\%$
- 2 Arrival direction
 - Least model dependent, pure geometrical reconstruction
 - SD: Using the trigger times of individual detectors
 - FD: Timing info is needed unless in stereo mode
 - Precision decreases with the growth of the effective area (currently $\sim 1.5^\circ$, for HiRes $\sim 0.6^\circ)$
- The type of the primary particle
 - $\bullet\,$ Fluctuations and Similarities \to Practically impossible for individual event
 - Strongly model dependent study of EAS properties
 - SD: Signal rise time, muon and electromagnetic component, front shape
 - FD: Depth of the maximal shower development

Energy Spectrum

- Knee at $E \sim PeV$
- Ankle at $E \sim 3 EeV$
- Suppression at E ≥ 30EeV

- No bright spots of few degree angular size (expected for protons with $E\gtrsim E_{GZK}$)
 - If protons, high density of sources $\rho > 10^{-4} Mpc^{-3}$. Hard to explain but not impossible (see e.g. O.K. et al. Phys.Rev. D86)
- Auger CenA excess and TA $\sim 20^\circ$ hot spot for E>57 EeV (JCAP 1106 (2011);Astrophys.J. 790 (2014))
 - No clustering at lower energies E_{max}/Z : If primaries are heavy nuclei, narrow composition?
 - If primaries are protons from Cen A EGMF must be high: $B\gtrsim 2\times 10^{-8}G$

Composition study

Observables

Experiment	detector	Observable
HiRes	fluorescence stereo	X _{MAX}
Pierre Auger	fluorescence + SD	X _{MAX}
	(hybrid)	
Telescope Array	stereo	X _{MAX}
Telescope Array	hybrid	X _{MAX}
Yakutsk	muon	$ ho_{\mu}$ (1000)
Pierre Auger	SD	X^{μ}_{MAX}
Pierre Auger	SD	risetime asymmetry

SD – surface detector X_{MAX} – depth of the shower maximum X^{μ}_{MAX} – muon production depth risetime – time from 10% to 50% for the total integrated signal

Detection of fluorescence light as a function of slant depth X_{max}

Composition study Light and heavy nuclei

Composition study

Light and heavy nuclei

Mixed composition

- $\overline{X_{max}} \propto \overline{log(A)} + const$
- Difference in X_{max} contributes to RMS

Composition study Light and heavy nuclei. Observations

Composition study Light or heavy nuclei

light	HEAVY			
Experiment:				
HiRes	Auger			
ТА	Yakutsk			
Theory:				
nuclei abundance and survival in cosmic accelerators are questionable	nuclei are accelerated to higher energies than protons			
$\sigma(X_{MAX})$ data indicate sharp composition change	density of sources; non-observation of clustering			

Composition study Photon identification with EAS

Photon identification with EAS

- Deep shower development
- Poor muon content

• No UHE γ identified so far. Strong limits (see below)

UHE Neutrino

Search with Pierre Auger Observatory

v detection with the Pierre Auger Observatory

الالمان selected as inclined Low zentrib EMal contriber (time High zenith (حقر المالي) contrib Spread roof 45D signals)

up-going (Earth-Skimming)

v_τ flavor Earth-Skimming (90°, 95°) contrib. to total evt rate 73%

NO CANDIDATES FOUND

• Top-Down (decay or annihilation of exotic particles)

• Bottom-Up (acceleration of charged particles)

- Top-Down (decay or annihilation of exotic particles)
 - Topological Defects (Hill 1983; Berezinky, Vilenkin 1997)
 - SHDM (Berezinsky et.al. 1997; Kuzmin, Rubakov 1997; Birkel, Sarkar 1998)
 - Z-bursts (Fargion, Mele, Salis-1999; Weiler -1999)
 - UHECR are mostly γ and ν (see e.g. O.K. et al 2009)
- Bottom-Up (acceleration of charged particles)

- Top-Down (decay or annihilation of exotic particles) disfavoured
 - Topological Defects (Hill 1983; Berezinky, Vilenkin 1997)
 - SHDM (Berezinsky et.al. 1997; Kuzmin, Rubakov 1997; Birkel, Sarkar 1998)
 - Z-bursts (Fargion, Mele, Salis-1999; Weiler -1999)
 - UHECR are mostly γ and ν (see e.g. O.K. et al 2009)
- Bottom-Up (acceleration of charged particles)
 - Proton primaries
 - Mixed composition primaries

Conditions to be fulfilled by source candidates

- **9 Geometry:** accelerated particle should be kept inside the source enough time (Hillas criterion) $E \leq qBR$
- **Radiation and interaction losses:** energy lost by a particle should not exceed the energy gain
- Emissivity: total number (density) and power of sources should be able to provide the observed UHECR flux
- Accompanying radiation: of photons, neutrinos and low-energy cosmic rays should not exceed the observed fluxes, both for a given source and for the diffuse background

Sources of UHECR

Maximal energy, Hillas criterion and radiation losses

$$E_{max} = min\{E_H, E_{loss}\}$$
, where

$$rac{dE^+}{dt}|_{E=E_{loss}}=-rac{dE^-}{dt}|_{E=E_{loss}}$$
 $E_{H}=qBR,$
 $rac{dE^+}{dt}\propto qB$

see e.g. Ptitsyna, Troitsky 2010

- **1** diffusive acceleration (shock waves) $E_{loss} \propto \left(rac{A}{Z}
 ight)^4$
- ② inductive acceleration with synchrotron-dominated losses (AGN jets) $E_{loss} \propto \frac{A^2}{Z^{3/2}}$
- inductive acceleration with curvature-dominated losses (immediate vicinity of neutron stars and black holes) $E_{loss} \propto \frac{A}{7^{1/4}}$

Attenuation of UHECR

Main attenuation channels

Nuclei

- $A\gamma_b \to A'N$
- $A\gamma_b \to A\pi$..
- $A\gamma_b \rightarrow Ae^+e^-$
- Protons and neutrons
 - $N\gamma_b \rightarrow N'\pi$..
 - $p\gamma_b \rightarrow pe^+e^-$
 - $n \rightarrow pe^-\overline{\nu}_e$
- Electron-photon cascade
 - $e\gamma_b \rightarrow e\gamma$
 - $\gamma \gamma_b \rightarrow e^+ e^-$
 - e synchrotron losses

Attenuation Lengths

• Deflections in galactic magnetic field for particles crossing disk:

$$rac{\Delta\Theta}{Z}\simeq 2.5^{\circ}rac{100 EeV}{E}rac{B}{3\mu G}$$

• Deflections in extragalactic magnetic field (EGMF):

 $\frac{\Delta\Theta}{Z} \lesssim 0.4^{\circ} \frac{100 EeV}{E} \frac{B}{0.1 nG} \frac{\sqrt{L\lambda_{cor}}}{10 Mpc}$ Current observational limits on EGMF strength *B* and correlation length λ_{cor}^{-1} :

 $10^{-16}G \lesssim B \lesssim 10^{-9}G$

Detailed simulations 2 show that EGMF has effect on UHECR spectrum if $B\gtrsim 10^{-10}G$ (assuming $\lambda_{cor}=1Mpc)$

¹ for review see R. Durrer and A. Neronov, Astron. Astrophys. Rev. **21**, 62 (2013)

²V. Berezinsky and A. Z. Gazizov, Astrophys. J. 669, 684 (2007)

Oleg Kalashev (INR RAS)

UHECR and their secondary signals

Numerical simulations

- Continuous energy loss approximation (e.g. Waxman 1995, Beresinsky et al. 2002)
 - Fastest, not very accurate around cut-off, fluctuations disregarded
- Solution of transport equations (e.g. Yoshida et al. 1993; O.K. et al. 2003)
 - Relatively fast and precise for homogeneous source distribution, no deflections.
- Monte-Carlo (e.g. Allard et al. 2005; Aloisio et al. 2012; Kampert et al. 2013)
 - Relatively slow, good for simulations of propagation in strong magnetic fields

Injection spectrum of nucleus with charge Z and atomic mass A: $Q_A(E, z) \propto c_A E^{-s} N(z)$ with $E_{max,A} = E_{max,p} \times f(A, Z)$ **Evolution** either specific (AGN, SFR, etc.) or generic $N(z) \propto (1+z)^{3+m}$

Parameter	Range	Description
S	1 < s < 2.7	Power of the Injection Spectrum
CA	$0 < c_{A} < 1$	Element abundances
E _{max,p}	5-1000 EeV	Maximal energy of protons
т	0 < <i>m</i> < 6	Evolution factor
Z _{min}	$0 < z_{min} < 0.01$	nearest source redshift
Z _{max}	$1 < z_{max} < 5$	maximal source redshift

Fitting spectrum of UHECR

- 'dip' model (Berezinsky et al. 2006)
 - ankle is caused by $p\gamma
 ightarrow e^+e^-$
 - minimum of model parameters s = 2.3 2.7
 - proton dominated composition
- 'Galactic composition' (Allard et al. 2005)

•
$$E_{max} \propto Z$$
, $E_{max,p} \gtrsim 100 EeV$

- Fit spectrum well assuming *p* = 2.2 - 2.3
- proton dominated composition
- 'Disappointing' model (Aloisio et al. 2009)
 - $E_{max} \propto Z$, $E_{max,p} \simeq 4 10 EeV$
 - Composition fine tuning is needed (too many CNO), see e.g. Hooper et al. 2009; O.K. & Rubtsov 2012 details
Nuclei

- $A\gamma_b \rightarrow A'N$
- $A\gamma_b \to A\pi$..
- $A\gamma_b \rightarrow Ae^+e^-$
- Protons and neutrons
 - $N\gamma_b \rightarrow N'\pi$..
 - $p\gamma_b \rightarrow pe^+e^-$
 - $n \rightarrow pe^-\overline{\nu}_e$
- Electron-photon cascadepe⁻ \bar{v}_e
 - $e\gamma_b \rightarrow e\gamma$
 - $\gamma\gamma_b \rightarrow e^+e^-$
 - e synchrotron losses

GZK γ, ν, n *n* from photodisintegration ν from β -decay

Diffuse γ -background

January 29, 2015 29 / 60

- Neutron decay (Mean travel distance $9.2E/[EeV]kpc) \rightarrow$ only galactic region accessible.
- Proton-like EAS
- No magnetic deflection: point-like excess expected
- Search in Auger and TA (coincidence with Fermi bright Galactic sources). No significant access found. Upper limits on neutron flux: $\sim 0.07/(km^2yr)$ at 1EeV

• Typically produced as decay products in $pp \ \& p\gamma$ collisions, e.g.

$$p + \gamma_b \to \Delta(1232) \to p + \pi^{0} \xrightarrow{\gamma} + \gamma \qquad E_{\gamma}/E_p \simeq 0.1$$
$$\searrow n + \pi^{+\gamma} \xrightarrow{\mu^+} + \nu_{\mu} \qquad E_{\nu}/E_p \simeq 0.05$$

Also may be produced in Top-Down models (decay or annihilation of exotic particles)

URB purely known

- Rectlinear propagation!
- ν: no interaction except mixing
- γ : initiate EM cascade

UHE u and γ Examples (N. Nierstenhofer, A. van Vliet)

UHE u and γ Examples (Gelmini, O.K. et al.)

• UHE γ flux strongly depends on radio background and EGMF

Photon flux limits

Current status reported on UHECR 2014 (M. Settimo et al.)

Photon diffuse limits (E > 1 Eev): current status

Diffuse UHE Neutrino Limits

Current status reported on UHECR 2014 (M. Settimo et al.)

IceCube Coll., Phys.Rev. D 88 (2013), 112008 IceCube Coll., PRL 113 (2014) 101101 ANITA Coll., Phys. Rev. D 85 (2012) 049901(E) Pierre Auger Coll. ICRC 2013 • UHE γ and e create EM cascade which develops down to e^+e^- production threshold

- \bullet UHE γ and e create EM cascade which develops down to e^+e^- production threshold
- Distant UHECR sources contribute the flux as in case of ν

- UHE γ and e create EM cascade which develops down to e^+e^- production threshold
- Distant UHECR sources contribute the flux as in case of ν
- Not sensitive to initial spectrum. Only sensitive to evolution and power of sources

Development of EM cascade

Propagated spectra from monochromatic γ injection at z=1 (Berezinsky & O.K. 2015)

information on initial UHE γ spectrum is lost if $E_{ini}\gtrsim 10^{14} eV$ \bigcirc details

- UHE γ and e create EM cascade which develops down to e^+e^- production threshold
- Distant UHECR sources contribute the flux as in case of ν
- Not sensitive to initial spectrum. Only sensitive to evolution and power of sources

- UHE γ and e create EM cascade which develops down to e^+e^- production threshold
- Distant UHECR sources contribute the flux as in case of ν
- Not sensitive to initial spectrum. Only sensitive to evolution and power of sources
- Equal or higher contribution from UHECR via $N + \gamma \rightarrow N + e^+e^-$.

Attenuation Lengths

- UHE γ and e create EM cascade which develops down to e^+e^- production threshold
- Distant UHECR sources contribute the flux as in case of ν
- Not sensitive to initial spectrum. Only sensitive to evolution and power of sources
- Equal or higher contribution from UHECR via $N + \gamma \rightarrow N + e^+e^-$.
- Smaller fluxes expected from nuclei.

- UHE γ and e create EM cascade which develops down to e^+e^- production threshold
- Distant UHECR sources contribute the flux as in case of ν
- Not sensitive to initial spectrum. Only sensitive to evolution and power of sources
- Equal or higher contribution from UHECR via $N + \gamma \rightarrow N + e^+e^-$.
- Smaller fluxes expected from nuclei.
- Observed by FERMI LAT in the range $100 MeV \gtrsim E_\gamma \gtrsim 800 GeV$

Fermi γ -ray Space Telescope

Launched from Cape Canaveral Air Station 11 June 2008

IGRB estimated between 100 MeV and 820 GeV (M. Ackermann *et al.* arXiv:1410.3696 [astro-ph.HE])

IGRB power density. Ultimate limit on UHECR models Berezinsky & 0.K. 2015

The shape of GeV - TeV spectrum doesn't depend on initial E_γ if $E_\gamma\gtrsim 10^{14}eV$

- Single parameter Ω_{cas} power density injected to EM cascade
- Only moderate redshift dependence.

Restricting UHECRs and cosmogenic neutrinos by diffuse γ flux

- V. S. Berezinsky and A. Y. Smirnov, Astrophys. Space Sci. 32, 461 (1975).
- O. E. Kalashev, V. A. Kuzmin, D. V. Semikoz and G. Sigl, Phys. Rev. D 66, 063004 (2002)
- M. Ahlers, L. A. Anchordoqui, M. C. Gonzalez-Garcia, F. Halzen and S. Sarkar, Astropart. Phys. 34, 106 (2010)
- V. Berezinsky, A. Gazizov, M. Kachelriess and S. Ostapchenko, Phys. Lett. B 695, 13 (2011)
- G. B. Gelmini, O. Kalashev and D. V. Semikoz, JCAP 1201, 044 (2012)
 - 'top-down' models disfavored
 - 'dip' models with strong evolution are constrained
 - So far IGRB estimate imposed more strict limits on UHECR models then UHE ν & $\gamma,$ but situation changes

- UHECR spectrum cut-off exists
- UHECR are not galactic (isotropy, no UHE neutrons)
- UHECR composition at highest energies unclear
- Ω_{cas} constrains models with primary p or high E_{max}
- Proton source models allowed by Ω_{cas} may be constrained by UHE γ and ν limits in near future
- $\bullet~{\rm UHE}~\gamma$ and ν if observed will point to source

Thank You

Appedix

Energy spectrum systematic uncertainties Auger-TA working group report on UHECR 2014

		Auger[%]	Telescope Array [%]]
Atmosphere		3.4 - 6.2	11	1
Detector		9.9	10	
Reconstruction		6.5 - 5.6	9	
Stability of the energy so	cale	5	-	J
Sub-total		13	17]
Oleg Kalashev (INR RAS)	UHECR	and their secondar	y signals January 2	29, 2

49 / 60

Anisotropy Study Summary

Auger-TA working group report on UHECR 2014

- Hotspot observed for TA events above 57 EeV. Post-trial probability of 4.0 (3.4) sigmas for 6 years (5 years). (RA, dec) = (148.4, 44.5) degrees
- Highest energy TA events show compatibility with LSS (2MASS as template)
- No statistically significant correlation with AGNs from VCV observed

- Auger events (>57 EeV) around CenA show maximum deviation from isotropy around 24 degrees
- HE events show compatibility with LSS tracers such as IR galaxies (2MRS) or AGNs detected in X-rays (Swift-BAT).
- Correlation with AGNs with events up to June 2011 at the level of 33%, compared to 21% from an isotropic sky
- Non-random phases over a broad energy range
- Combined sky maps above 10 EeV provide full sky coverage with great potential for large scale anisotropy studies

$$E_{max} = \min\{E_{H}, E_{loss}\} \qquad E_{H} = 9.25 \times 10^{23} eV Z \frac{R}{kpc} \frac{B}{G}$$
Radiation losses criterion
$$\frac{dE^{(+)}}{dt} = q\eta B \quad \eta \le 1$$
diffusive acceleration
(thock wave etc.)
inductive acceleration with
synchrotron-dominated losses
(rest of powerful active guardes)
$$-\frac{dE^{(-)}}{dt} = \frac{2}{3} \frac{q^{4}}{m^{4}} E^{2}B^{2}$$

$$E_{loss} = 1.64 \times 10^{20} eV \frac{A^{2}}{Z^{3/2}} \left(\frac{B}{G}\right)^{-1/2} \eta^{1/2}$$

$$-\frac{dE^{(-)}}{dt} = \frac{2}{3} \frac{q^{2}}{r^{2}} \left(\frac{E}{m}\right)^{\frac{4}{7}}$$
inductive acceleration with
curvature-dominated losses
(rest of rowerful active guardes)
$$E_{loss} = 1.23 \times 10^{22} eV \frac{A}{Z^{1/4}} \left(\frac{R}{kpc}\right)^{1/2} \left(\frac{B}{G}\right)^{1/4} \eta^{1/4}$$

Transport equations

$$\begin{split} \partial_t N_p(E_p) &= -N_p(E_p) \int d\epsilon \, n(\epsilon) \int d\mu \frac{1 - \beta_p \mu}{2} (\sigma_{\mathbf{p},\pi} + \sigma_{\mathbf{p},\mathbf{e}}) + \\ \int dE'_p N_p(E'_p) \int d\epsilon \, n(\epsilon) \int d\mu \frac{1 - \beta'_p \mu}{2} \left(\frac{d\sigma_{\mathbf{p},\pi}}{dE_p} + \frac{d\sigma_{\mathbf{p},\mathbf{e}}}{dE_p} \right) + \\ \int dE'_n N_n(E'_n) \int d\epsilon \, n(\epsilon) \int d\mu \frac{1 - \beta'_n \mu}{2} \frac{d\sigma_{\mathbf{n},\pi}}{dE_p} + N_n(E_p) \frac{m_n}{E_p} \tau_n^{-1} + Q_\mathbf{p}(E_p) \end{split}$$

$$\begin{split} \partial_t N_n(E_n) &= -N_n(E_n) \int d\epsilon \, n(\epsilon) \int d\mu \frac{1 - \beta_n \mu}{2} \sigma_{\mathbf{n},\pi} + \\ \int dE'_p N_p(E'_p) \int d\epsilon \, n(\epsilon) \int d\mu \frac{1 - \beta'_p \mu}{2} \frac{d\sigma_{\mathbf{p},\pi}}{dE_n} + \\ \int dE'_n N_n(E'_n) \int d\epsilon \, n(\epsilon) \int d\mu \frac{1 - \beta'_n \mu}{2} \frac{d\sigma_{\mathbf{n},\pi}}{dE_n} - N_n(E_n) \frac{m_n}{E_n} \tau_n^{-1} + Q_\mathbf{n}(E_n) \end{split}$$

Dip in UHECR spectrum

Modification factor $\eta(E) = \frac{J_{\rho}(E)}{J_{\rho}^{ad}(E)}$ $J_{\rho}(E)$ - all energy losses; $J_{\rho}^{ad}(E)$ adiabatic losses only

Oleg Kalashev (INR RAS)

UHECR and their secondary signals

UHE Neutrons

September and Telescope Array

Search for excess of CR events (proton-like) from discrete sources within the angular resolution. *Only galactic region accessible* (Mean travel distance ~ 9.2 E/[EeV] kpc)

Fitting Auger Spectrum and Composition

O.K.&G.Rubtsov - Quarks 2012

- Binned maximum likelihood function is used for both spectrum and Xmax distribution in each bin (X range is splitted onto N bins with roughly equal event counts)
- · Poisson probability of the observed event set is maximized
- Goodness of fit is calculated by randomly generating sets of hypothetical experiments according to Poisson probabilities given by model.

$$L(\mathbf{n};\,oldsymbol{
u}) = \prod_{i}^{N} rac{
u_{i}^{n_{i}}}{n_{i}} e^{
u_{i}}$$

Phenomenological source model:

$$F(E) = \sum_{A} c_A E^{-\alpha} \qquad E_{max,A} = E_{max,p} f(A,Z) \qquad 1 \le \alpha \le 2.7$$

Free parameters: $c_A, \alpha, E_{max,p}, \Delta E/E, \Delta X$

Using mixture of p,He,N,Fe as primary source A = 1, 4, 14, 56

Oleg Kalashev (INR RAS)

Fitting Auger Spectrum and Composition O.K.&G.Rubtsov - Quarks 2012

Oleg Kalashev (INR RAS)

Fitting Auger Spectrum and Composition O.K.&G.Rubtsov - Quarks 2012

 $E_{fit} > 5 EeV$ P-value plots

Fitting Auger Spectrum and Composition O.K.&G.Rubtsov - Quarks 2012

We require GOF>0.05 for E>5EeV and maximize P fraction

 $min(N_A/N_{tot})$

$$E_{max} \propto Z$$
 0.05

$$\begin{array}{ll} & \text{Diffusive acc.} \\ \text{with synchrotron} & E_{max} \propto \left(\frac{A}{Z}\right)^4 \\ \text{One-shot acc.} \\ \text{with synchrotron} & E_{max} \propto \frac{A^2}{Z^{3/2}} \\ \text{One-shot acc.} \\ \text{Dive-shot acc.} & E_{max} \propto \frac{A}{Z^{1/4}} \\ \text{One-shot acc.} \\ \text{Diversiting acc.} & E_{max} \propto \frac{A}{Z^{1/4}} \\ \end{array}$$

 $\frac{c_A}{c_p} = \frac{N_A}{N_p} f(A/Z)^{\alpha - 1}$

 $F(E) = \sum_{A} c_{A} E^{-\alpha}$ $E_{max A} = E_{max B} f(A, Z)$

back to fits

Development of EM cascade

Interaction lengths of e and γ

information on initial UHE spectrum is lost

Oleg Kalashev (INR RAS)

UHECR and their secondary signals

Development of EM cascade Berezinsky & O.K. 2015

▶ back