Post trigger file dataformat

Proposal from C. Pellegrino
for the KM3NeT-Italy TriDAS



The actual PT file format

Every PostTrigger (PT) file has the following structure:

PTHeaderlInfo
TriggeredEventHeaderInfo #1

Hit #1
Hit #2

Hit #N
TriggeredEventHeaderInfo #M

Hit #1
Hit #2

Hit #N

s PTGeneralHeaderInfo + array of
triggered events

The header struct must contain all the
relevant informations for the off-line
analysis and for the DAQ group.



Actual fields of PTHeaderlInfo (to be discussed)
mm

uint

uint

uint

uint

uint

uint

uint

uint

uint

uint

uint

uint

32
64
32
32
32
32
32

32 x
NPMTTOWER_MAX

32 x
NPMTTOWER_MAX

32 x
NPMTTOWER_MAX

32 x
NPMTTOWER_MAX

VersionPTFile
RunNumber
StartTime5ns
MaxFileSize
EffectiveFileSize
FileNumber
TotEventsinFile
NPMTperTower

TimeOffset

PedestalA

PedestalB

QThreshold

Data format release

The run number

Start time of the run in 5ns units
the maximum size for a pt-file

the effective size of this very pt-file

File counter for the run

the total number of PMTs in the tower

[ns] Time offsets corrections

*1000 and converted from float to int -
pedestal to be subtracted to odd samples

/ *1000 and converted from float to int -
pedestal to be subtracted to even samples

*1000 and converted from float to int -
minimum requested (and calibrated)
charge to be accepted for a trigger



Use a struct similar PTHeaderInfo

Pros: well defined format, fast and optimized for
memory.

Cons: dedicated programming is needed to
perform read and write operations, difficult to

extend mantaining backward compatibility.

The experience of phase 2 says that request of
new fields can arrive from the analysis group.



Proposed solution

Substitute the PTHeaderlnfo with a ASCll-based
header (i.e. JSON)

* Pros: extensibility, human readable (using
shell programs like head, less, strings etc...)

and debugged.

e Cons: (negligible) overhead in the file size and
parsing time.



Local log for the Datacards

Proposal from C. Pellegrino
for the KM3NeT-Italy TriDAS



* Problem: we want a log of the datacard of
every run that is independent from the DB.

* Proposal: use a git repo hosted in the TSC
home. The TSC should handle the commit and

push operations



This concept explained in shell
commands

At the beginning of each run:

S cp datacard.ini S{REPO_ROOT}/repo/

S cd S{REPO_ROOT}/repo/

S git add datacard.ini

S git commit —m “run number S{run_number} S(date)
S git push

S cd -



Advantages

All the needed tools are already written, easy
to use and install

There are free solution to publish/backup the
repo (bitbucket, github)

The repo is already compressed

We can use all the features of git: log, diff, tag,
etc...



