Post trigger file dataformat

Proposal from C. Pellegrino
for the KM3NeT-Italy TriDAS



The actual PT file format

Every PostTrigger (PT) file has the following structure:

PTHeaderlInfo
TriggeredEventHeaderInfo #1

Hit #1
Hit #2

Hit #N
TriggeredEventHeaderInfo #M

Hit #1
Hit #2

Hit #N

s PTGeneralHeaderInfo + array of
triggered events

The header struct must contain all the
relevant informations for the off-line
analysis and for the DAQ group.



Actual fields of PTHeaderlInfo (to be discussed)
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VersionPTFile
RunNumber
StartTime5ns
MaxFileSize
EffectiveFileSize
FileNumber
TotEventsinFile
NPMTperTower

TimeOffset

PedestalA

PedestalB

QThreshold

Data format release

The run number

Start time of the run in 5ns units
the maximum size for a pt-file

the effective size of this very pt-file

File counter for the run

the total number of PMTs in the tower

[ns] Time offsets corrections

*1000 and converted from float to int -
pedestal to be subtracted to odd samples

/ *1000 and converted from float to int -
pedestal to be subtracted to even samples

*1000 and converted from float to int -
minimum requested (and calibrated)
charge to be accepted for a trigger



Use a struct similar PTHeaderInfo

Pros: well defined format, fast and optimized for
memory.

Cons: dedicated programming is needed to
perform read and write operations, difficult to

extend mantaining backward compatibility.

The experience of phase 2 says that request of
new fields can arrive from the analysis group.



Proposed solution

Substitute the PTHeaderlnfo with a ASCll-based
header (i.e. JSON)

* Pros: extensibility, human readable (using
shell programs like head, less, strings etc...)

and debugged.

e Cons: (negligible) overhead in the file size and
parsing time.



Local log for the Datacards

Proposal from C. Pellegrino
for the KM3NeT-Italy TriDAS



* Problem: we want a log of the datacard of
every run that is independent from the DB.

* Proposal: use a git repo hosted in the TSC
home. The TSC should handle the commit and

push operations



This concept explained in shell
commands

At the beginning of each run:

S cp datacard.ini S{REPO_ROOT}/repo/

S cd S{REPO_ROOT}/repo/

S git add datacard.ini

S git commit —m “run number S{run_number} S(date)
S git push

S cd -



Advantages

All the needed tools are already written, easy
to use and install

There are free solution to publish/backup the
repo (bitbucket, github)

The repo is already compressed

We can use all the features of git: log, diff, tag,
etc...



