INFN Where we are with advancing the marriage
C :
between electron and photon beams: the way ahead

Luca Serafini — INFN Milano

e Advancing the Phase Space Density of Electron and Photon
Beams is a key issue for the development of many machines and
applications: FEL’s, Inverse FEL’s, Plasma Accelerators,
Thomson/Compton X/y Ray Sources, Photon-Photon Colliders

e Co or Counter-propagating, at the gm/fs alignment and
synchronization level, beams of electrons and optical/X/y
photons (either in vacuum or in plasma) enables a new
generation of machines capable to drive unprecedented
applications and experiments in the fields of Photonics, Nuclear
Physics and Nuclear Photonics, Light-to-Light QED fundam.
research, etc

MiniWorkshop on Accelerators, CSN5 @ INFN-LNL, Feb. 17th 2015
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o Golden Examples of marriage between electron and photon
beams are: Inverse Free Electron Lasers (in vacuum co-
propagation of high brightness electron beams and high
intensity laser pulses), Seeding FEL’s, Plasma Acceleration
with External Injection (in plasma co-propagation of high
brightness electron beams and high intensity laser pulses),
Thomson/Compton Back-Scattering Sources (in vacuum
counter-propagation of high phase space density electron beams
vs. high average power laser beams)

* Most of these techniques/machines aim at producing advanced
radiation beams, mainly for applications. -> Light Sources

MiniWorkshop on Accelerators, CSN5 @ INFN-LNL, Feb. 17th 2015
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« \We will consider here a unique example of a machine aimed at
the opposite: Fundamental Physics (almost HEP) with a Light
Source! I.e. Light-to-Light interaction, vs. Light-to-Matter, as
typical of Light Sources

 Why a Photon-Photon elastic/inelastic scattering experiment?
Fundamental test for QED never observed so far (elastic
scattering with real photons, pure light-to-light interaction)

 Why now? Future availability of tunable/polarized/mono-
chromatic/high-phase-space-density MeV-class photon beams
mutuated from Nuclear Photonics (ELI-NP-GBS, MegaRay,
STAR, etc)

MiniWorkshop on Accelerators, CSN5 @ INFN-LNL, Feb. 17th 2015
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Narrowband gamma-ray absorption and re-radiation ]
by the nucleus is an “isotope-specific”’ signature

Excited nucleus

N

Relaxation:
Fluorescence

Incident y-ray

Time

Nuclear Resonance Fluorescence (NRF) is analogous to atomic resonance fluorescence
but depends upon the number of protons AND the number of neutrons in the nucleus

MiniWorkshop on Accelerators, CSN5 @ INFN-LNL, Feb. 17th 2015 Courtesy C. Barty - LLNL



Some Potential Nuclear Photonics NRF Applications of MEGa-rays

detection of shielded material

HEU Grand Challenge

Nuclear Fuel Assay
100 parts per milllon per Isolope

[

Waste Imaging & Assay

non-invasive content certification
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Precision Imaging
mieron-scale & Isotope specific

Medical Imaging
low densliy & Isofope specific

o,

Office of Science

Dense Plasma Science
Isotope mass, position & velocity
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ELI-NP-Gamma Beam System
designed by EuroGammasS
INFN as main coordinator
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Technical Design Report

EuroGammas proposal for the ELI-NP Gamma beam System
With 73 tables and 230 figures

O. Adriani, 5. Albergo, D. Alesini, M. Anamia, D. Angal-Kalinin, P. Antici, A. Bacci, R. Bedogmi, M.
Bellavegha, C. Biscari, N. Bliss, R. Boni, M. Boscolo, F. Broggi, P. Cardarelli, K. Cassou, M.
Castellano, L. Catani, |. Chaikovska, E. Chiadroni, R. Chiche, A. Cianchi, J. Clarke, A. Clozza, M.
Coppola, A. Courjaud, C. Curatolo, D Dadoun, N. Delerue, C. De Mamms G. Di Dﬂmemm E Di
Pasquale, G. Di Pirro, A. Drago, F. Druon, K. Dupra; F. Ega{ A. Esposito, F. Falcoz, B. Fell M.
Ferrario, L. Ficcadenti, P. Fichot, A. Gallo, M. Gambaccini, G. Gatti P. Georges, A. Ghigo, A.
Goulden, G. Graziani, D. Guibout, O. Guilbaud, M. Hanna, J. Herbert. T. Hovsepian, E. larocci, P.
lono, 5. Jamison, 5. Kazamias, F. Labaye, L. Lancia, F. Marcelini A. Martens, C. Maroli B.
Martiew, M. Marziani, G. Mazzitelli, P. Mcintosh, M. Mighorati, A. Mostacci. A. Mueller, V. Nardone,
E. Pace, D.T. Palmer, L. Palumbo, A. Pelorosso, F.X. Penn, G. Passaleva, L. Pellegrino, V.

Petrillo, M. Pittman, G. Riboulet, R. Ricci, C. Ronsivalle, D. Ros, A. Rossi, L. Serafini, M. Serio, F.
Stocchi,

iy This new generation machines will enable Vescovi
Y photon-photon scattering high luminosity colliders
108 Authors, 327 pages

Published on ArXiv
http://arxiv.org/abs/1407.3669
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:) Photon-photon scattering is a probe into
C the structure of the vacuum of QFT

/ The QFT vacuum holds the key to the
understanding of renormalization in QFTs.

Different vacua are possible, and the

observation of photon-photon scattering would
/ provide important clues on the actual structure
of the QFT vacuum.

Photon-photon scattering at low enerqy Is very difficult to observe, the total cross-
section Is extremely small. The total unpolarized scattering cross section predicted by

QED |
. (QED) __ 973#(2)(hw)6A2
Oy - 20mhict T
Where 23
A = 29 13910~

- 45119 C2

This evaluates to a very small number with low energy (= 1 eV) photons, however it
Increases as the sixth power of photon energy.
MiniWorkshop on Accelerators, CSN5 @ INFN-LNL, Feb. 17th 2015
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L./ threshold of the threshold of the _ - _
Breit-Wheeler Bethe-Heitler integrated luminosity corresponding
process process €y — ee'e to a bare minimum of about 100
scattering events (total).
o ,(tbamn)
1 nbt
10 pbt

E.,(MeV)
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Unpolarized and (circularly) polarized initial photons.

The scattering of polarized photons yields additional information
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Differential cross-section at ECM = 1.6 MeV (peak)

0.4
0.3}
Differential Cross Section is larger

at large scattering angles for lower
photon energies — easier detection

(ubarn/steradians)

do
dQ)

1.0 15 20 75
@ (radians)

2
mc

6
do 139 {xzrﬂz( ho ) (3+cos’ 9)2

dQ  (1807)’



)

'lll"hl
C Differential cross-section at ECM = 10 MeV
o _
0.25¢ ]

Differential Cross Section is smaller at
large scattering angles for higher photon '
energies — more difficult detection

— (ubarn/steradians)
=
o
LN
|

0.10L ]
ISR
513 0.05) ]

0050~ —05 10 15 20 25 30

8 (radians)

do o 2 ( m] (ln ho ) do o’ [ ho ]2
E— ~ 5 1o E— — e j"d
dQl,., T mec mc’ dQy_,, 7° % \me*

MiniWorkshop on Accelerators, CSN5 @ INFN-LNL, Feb. 17th 2015



L A Photon-Photon Scattering Machine based on
twin Photo-Injectors and Compton Sources

 Mono-chromatic High Brilliance micron-spot psec Gamma Ray
beams are needed for pursuing Photon-Photon scattering
experiments at high luminosity = scaling laws

« Similar to those generated by Compton (back-scattering)
Sources for Nuclear Physics/Photonics

e (mini) Colliders similar to y—ycolliders, but at low energy (in
the 0.5-2 MeV range): issue with photon beam diffraction!

e Best option: twin system of X-band 200 MeV photo-injectors
with Compton converters and amplified J-class ps lasers (ELI-
NP-GBS/STAR) —single bunch no laser re-circulation

MiniWorkshop on Accelerators, CSN5 @ INFN-LNL, Feb. 17th 2015
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Strawman Design of Photon-Photon Scattering machine based
on X-Band SLAC RF Photo-Injector (XTA-like, C.
Limborg) + SLAC new X-band (Tantawi-Dolgashev ATR /
Spataro INFN-LNF Norcia INFN-SLAC MOU) RF cavities
+ J-class Yb:Yag 100 Hz collision laser (Amplitude/ELI-NP-
GBS&EuroGammas)

NEN A

G. Diraddo
PHZSC = Photon-Photon SCattering

MiniWorkshop on Accelerators, CSN5 @ INFN-LNL, Feb. 17th 2015
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We evaluated the event production rate of several schemes for
photon-photon scattering, based on ultra-intense lasers,
brenmstralhung machines, Nuclear Photonics gamma-ray
machines, etc, in all possible combinations: collision of 0.5 MeV
photon beams is the only viable solution to achieve 1 nbarn- in

a reasonable measurement time.

1)Colliding 2 ELI-NP 10 PW lasers under construction (ready in
2018), hv=1.2 eV, f=1/60 Hz, we achieve (E_ =3 eV):
L-=6.10%, cross section= 6.10-°4, events/sec=10-°

2)Colliding 1 ELI-NP 10 PW laser with the 20 MeV gamma-ray
beam of ELI-NP-GBS we achieve (E_.,=5.5 keV): Lg=6.1033,
cross section=104, events/sec = 10®

MiniWorkshop on Accelerators, CSN5 @ INFN-LNL, Feb. 17th 2015



3)Colliding a high power Brehmstralhung 50 keV X-ray
beam (unpolarized, 100 kW on a mm spot size) with ELI-
NP-GBS 20 MeV gamma-ray beam (E.,=2 MeV) we
achieve: L¢-=6.10%%, cross section=1 pbarn, events/s =
108

4) Colliding 2 gamma-ray 0.5 MeV beams, carrying
10° photons per pulse at 100 Hz rep rate, with focal
spot size at the collision point of about 2 um, we
achieve: L-=2.10%°, cross section =1 pbarn,
events/s=2.10*4, events/day=18, 1 nanobarn-
accumulated after 3.2 months of 5/24 machine
running.

MiniWorkshop on Accelerators, CSN5 @ INFN-LNL, Feb. 17th 2015
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a) 200 MeV/m peak cathode field of X-Band SLAC RF Photo-
Injector (recently proven)

b) 100 MeV/m SLAC (Tantawi/Dolgashev/Spataro) new X-band RF
cavities (recently demonstrated)

1) Electron beam operation in single bunch — focusability to 3
micron spot size at Compton Interaction Point

2) Pointing stability at 2 Compton Sources
3) Deflection of counter-propagating electron bunches to avoid

e-/e- Interactions

MiniWorkshop on Accelerators, CSN5 @ INFN-LNL, Feb. 17th 2015



65-90 MeV RF Photo-injecto
driving a X-ray Thomson So




Radiation Bunker qualified for up
> |10 350 MeV electron beams, 3 A

MiniWorkshop on Accelerators, CSN5 @ INFN-LNL, Feb. 17th 2015



STAR = Southern europe Thomson source for Applied Research

Unical Campus

MiniWorkshop on Accelerators, CSN5 @ INFN-LNL, Feb. 17th 2015



15 M€ funding 2012-2015 from PON national/european initiatives
for regions of convergence (Italy: Sicily, Calabria, Puglia, Campania)

MiniWorkshop on Accelerators, CSN5 @ INFN-LNL, Feb. 17th 2015
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CONCLUSIONS

o Clear Scientific Case on Fundamental QED and QFT
» Technical Solution for the Machine (challenging)

e Auvailable Site

e Good opportunity for funding raising

e Uniqueness: a HEP experiment performed with a Light Source:

the paradigma for electron and photon beam marriage

Many Thanks to: E. Milotti, D. Babusci, A. Bacci, C. Curceanu,
|. Drebot, M. Ferrario, D. Palmer, B. Spataro

MiniWorkshop on Accelerators, CSN5 @ INFN-LNL, Feb. 17th 2015
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C FEL resonance condition

(magnetostatic undulator )

Example : for Az=1A, A4,=2cm, E=7 GeV
a, =0.934,[cm]B,[T]

2
Ae = A (1+ a02/2) (electromagnetic undulator )
4y

Example : for Az=1A, 1=0.8um, E=25MeV

ALpm B P[TW ] » laser power

Ro[zm ]

MiniWorkshop on Accelerators, CSN5 @ INFN-LNL, Feb. 17th 2015 » laser spot size



Quantum model

n
= hv,
me(y=yo)=—h(v-—v) : it
nergy and momentum Y,:1nitial
mc( ﬁy—ﬁoyo)z—h(lg—lgL)/ 2T conservation laws Lorentz factor
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MiniWorkshop on Accelerators, CSN5 @ INFN-LNL, Feb. 17th 2015 Courtesy V. Petrillo — Univ. of Milan
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The simplest interactions between light and matter:

the basics of QED

Compton scattering Photoelectric effect Bremsstrahlung

Dirac Bret-Wheeler Single photon Bethe-Hertler
annihilation pair production annihilation pair production

Courtesy Oliver Pike



SLAC E-144 experiment:
first sign of positron production in light-by-light scattering

Multi-photon

Breit-Wheeler process 108 Wem-? laser

Y+ e —> ete”
PHYSICAL REVIEW D, VOLUME 60, 092004

Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses

C. Bamber.* 8. J. Boe.ge,T T. Koffas, T. Kﬂtsmgluu,1 A.C. Melissinos, D. D. I'lu'l|t=5:'er]':u::far,§ D. A. Reis, and W. Ragg”
Department of Physics and Astronemy, University of Rochester, Rochester, New York 14627

C. BulaJ K. T. McDonald, and E. J. Prebys
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544

D. L. Burke, R. C. Field, G. Horton-Smith.** J. E. Spencer, and D. Walz
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

S. C. Berridge, W. M. Bugg, K. Shmakov, " and A. W. Weidemann
Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996

(Received 1 Febmary 1999; published 8 October 1999)
* Recently shown that, on average, n = 6.44 laser
photons were absorbed.

Burke et al, PRL 79, 1625 (1997}
Hu & Maller, PRL 107, 020402 (20107

Courtesy Oliver Pike



A photon-photon collider in a vacuum hohlraum:
a new HEP experiment using HEDP facilities

Uhtra-relativistic
electrons

Gamma-ray Thermal x-ray field
beam

Pike et al, Nature Photonics 8,434 (2014)

Courtesy Oliver Pike
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Multiphoton Breit-Wheeler scattering was observed at SLAC.
However, as clearly stated also in the paper, “The multiphoton
Breitd-Wheeler reaction becomes accessible for n > 3 laser photons
of wavelength 527 nm colliding with a 29.2 GeV photon[]*®.

Indeed, the straghtforward two-photon Breit-Wheeler reaction

has never been observed. The difference may appear minor,
however it isn’t. Multi photon scattering has a considerably

more complex kinematics, and the dynamical calculation clearly
requires more than one internal propagator in the Feynman diagram.

But more than that, Breit-Wheeler scattering — be it multi photon
or not — is described by a simple tree-level diagram at the lowest
perturbative order, while photon+photon —> photon+photon,
needs a fermion loop at the lowest level, and thus is a true probe
of the quantal nature of field theory.

Edoardo Milotti - INFN-Trieste

MiniWorkshop on Accelerators, CSN5 @ INFN-LNL, Feb. 17th 2015
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_ The cosmological constant problem is related to the zero-point
energy, i.e., to the fluctuations of quantum vacuum, and

therefore also to the renormalization procedure in QFT.

Photon-photon scattering directly probes the fluctuations of

quantum vacuum.

This is the first nonvanishing diagram:
there are no tree-level diagrams

All the involved photons are real
particles

MiniWorkshop on Accelerators, CSN5 @ INFN-LNL, Feb. 17th 2015



Recent references on low-energy light-magnetic field scattering (photon-photon
scattering between real infrared photons and virtual magnetic field photons)

F. Della Valle, E. Milotti, A. Ejlli, G. Messineo, L. Piemontese, G. Zavattini, U. Gastaldi, R.
Pengo, G. Ruoso: "First results from the new PVLAS apparatus: A new limit on vacuum
magnetic birefringence", accepted for publication in Physical Review D

F. Della Valle, U. Gastaldi, G. Messineo, E. Milotti, R. Pengo, L. Piemontese, G. Ruoso, G.
Zavattini: "Measurements of vacuum magnetic birefringence using permanent dipole
magnets: the PVLAS experiment", New J. Phys. 15 (2013) 053026

*A. Torre, G. Dattoli, I. Spassovsky, V. Surrenti, M. Ferrario, and E. Milotti: "A double FEL
oscillator for photon-photon collisions"”, Journal of the Optical Society of America B 30
(2013) 2906-2914

E. Milotti, F. Della Valle, G. Zavattini, G. Messineo, U. Gastaldi, R. Pengo, G. Ruoso, D.
Babusci, C .Curceanu, M. lliescu, C. Milardi: "Exploring quantum vacuum with low-energy
photons", Int. J. of Quantum Information 10 (2012) 1241002

Historical reference on photon-photon scattering opportunities

*Paul L. Csonka, “Are photon-photon scattering experiments feasible?”, Phys. Lett. 24B
(1967) 625

MiniWorkshop on Accelerators, CSN5 @ INFN-LNL, Feb. 17th 2015
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~ Formulas for photon scattering Luminosity
L extensively tested vs. ELI-NP-GBS simulations

(N Sho) = — O Wo
70; foed, o, = {l} o Jach o

UL[J]Q[pC]fRF5¢ 0

hv]|eV ][Gf [,um] + W [,um ]] V2

Assumptions: weak diffraction co, < Z,

s

and o, , < f, =— and Iideal time—space overlap

N =1.4-10°

2=

Implies: o, < a few psec o, , < 300 um

MiniWorkshop on Accelerators, CSN5 @ INFN-LNL, Feb. 17th 2015




L, 62107 U IR [pCfeeo, e
SC W2 m 2
hv?[eV oy [ xm Jw; [,umiaf | um |+ OEU ]]
Source size o 5 Wo Photon emittance = ¢, =0 -i
° \/4 + W, 0TS 2

2
Diffraction ¢(z) = o; 1+—2 diffr. length £ = Os _ ‘/EUS
Iif €0 0

S ~(ph-ph scatt)~ 3yo,

Formula for L is valid if distance between 2
Compton conversion IP’s is smaller than 5*

Example =300 ox=3 ym f*=I mm

MiniWorkshop on Accelerators, CSN5 @ INFN-LNL, Feb. 17th 2015
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Envelopes of the laser beam (dotted line), first electron beam (for
Compton back-scattering, dashed) deflected after collision with
laser to clear the second electron beam (solid line).
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... somewhat similar to Crystal Ball

Edoardo Milothi - LMF/IRIDE
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(- For i< U.Tmeﬂz , the differential photon-photon scattering cross-section is

do  139a* W°
dQ  (1807)* m®

(3 + cos? 9)2

This cross-section is derived from a genuine non-linear QED effect

(loop) and its value is critically dependent on the regularization
procedure.

The importance of regularization has recently been emphasized by the a couple of wrong
preprints, that claimed that the photon-photon cross section is actually

dopk ol

d  (127)% w2

(3 + 2 cos? 0 + cos? 9)

(see N. Kanda, arXiv:1106.0592, and T. Fujita and N. Kanda, arXiv:1106.0465, and the
refutation by Y. Liang and A. Czarnecki, arXiv:1111.6126)
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