LNF Accelerators Evolutions and Upgrades

Andrea Ghigo on behalf of Accelerator Division

Miniworkshop su Acceleratori

Legnaro, February 17, 2015

$DA\Phi NE$ and KLOE activities

Aiming at delivering 1 fb⁻¹ after 8 months operation after LNF Scientific Committee November 13, 2014

Peak Luminosity

	DAΦNE CW upgrade SIDDHARTA (2009)	DAΦNE KLOE (2005)	DAΦNE (CW) KLOE (2012)	DAΦNE (CW) KLOE-2 (2014)
L _{peak} [cm ⁻² s ⁻¹]	4.53•10 ³²	1.50•10 ³²	1.52•10 ³²	1.80•10 ³²
ŀ [A]	1.52	1.4	0.93	1.11
I+ [A]	1.0	1.2	0.72	0.88
N _{bunches}	105	111	100	95

Hourly integrated Luminosity November 2014

Background was compatible with the detector data-taking

Daily integrated Luminosity November 2014

Collider uptime

Collision time is defined as the percentage DAFNE has been delivering a *reasonable luminosity* to the KLOE-2 detector Low Collision time has been due to scheduled activities mainly about the detector

Electron main ring klystron replacement February 2015

2015 restart: inner tracker in acquisition

Sunday Feb 15th: - peak luminosity of 1.5*10^32

- 5 pb-1 /day on disk,
- Reasonable background,
- Inner tracker on

Beam Test Facility (BTF) @ DAFNE

The **BTF** is a transfer line optimized for **two** main purposes:

- the production of single-particle distribution of electrons/positrons
- the extraction of the full beam from the DAFNE linac

BTF users

- **11 years** of consolidated and steady running
- Average beam time: 220 days/year
- Average shift : 8 days
- **70%** of the beam time in parasitic mode during DAFNE collider operations
 - 30% of foreign users

- Mainly detector testing from the HEP and astroparticle community
- but also:
 - High intensity tests and experiments:
 - RAP
 - AIRFLY, AMY
 - Channeling experiments
 - C-SPEED
 - Beam diagnostics (pepper-pot, diamonds)
 - Neutron and charged particles production

Foreign institutions users

BTF users, coming from foreign institutions (multiple shifts counted once), during the last 3 years

BTF beam

Measurement of the beam E spread

- Energy spread ∆p/p ~1%
- Beam spot: 1 2 mm RMS
- Divergence: 1 1.5 mrad

Effect of multiple scattering in air and line optics

- Beam position: 0.25 mm RMS
- Pulse duration: 1.5 40 ns
 - (10 ns during DAFNE operations)

NIM A 718 (2013) 107– 109

High intensity

- Present authorization for BTF hall:
 - * <n> = 3.125 10¹⁰ electrons/s at 800 MeV
 - * 5 nC/s = 10 mA × 10 ns × 50 Hz
 - Translates to ≈10¹⁸
 electrons/year
- * Shielding requirements:
 - * 1 m of concrete
 - * 15 cm of lead

Improvements of the beam parameters driven by the requirements of possible future experiments:

- Make the linac pulses variable in length:
 - Upgrade of the gun pulsing system, now capable of delivering pulses between 1.5 and 40 ns, in steps of 0.5 ns, and pulse height between 300 and 750 V in steps of 30 V
 - Studying the energy spread vs. pulse length, towards a ≈150 ns pulse
- Verify all possible handles in order to increase the total pulse charge
- Optimize focalization at the exit of the gun, and the transport along the linac, in order to reach the maximum possible energy (both with electrons and positrons)
- Improve the diagnostics (BPM's all along the linac all connected and read-out)

Summer 2015: add concrete ceiling

Doubling of BTF lines

- Control room already been moved upstairs to free additional area
- Modified lines calculation under way
- Shielding to be properly calculated

Linac energy upgrade: add 4 sections and 2 RF stations

1070 MeV electrons 870 MeV positrons

Linac energy upgrade: add 4 sections and 4 RF stations

Studying modifications of the infrastructure for future electron fixed-target experiments

Two separate areas may be used:

BTF hall

"hot cell"

- The BTF experimental hall for a setup like **PADME** (visible and invisible), $10^4 10^5$ particles/pulse on a thin target The DR pumps hall, behind the ADONE dump, for high intensity/long dump experiments like **PADME-dump** and **BDX@LNF** (10^{10} particles/pulse)
 - Alternate running of the two areas possible, also to be compatible con other uses of the linac (DAFNE, BTF standard users)

Existing dump

- Cavity in the wall covered by lead bricks
- 50 cm additional concrete blocks with
 25×25 cm² hole for beam entrance

Neutron @ BTF

At 725 MeV and full linac power: 10¹³ e/s
to be compared e.g. with nELBE, N=6·10¹⁵ e/s

n@BTF optimized target: 2.75 ·10¹² n/s kW⁻¹

Increasing pulse height and length, we can
 increase 50× (from 40 W to ~1 kW)

External programs

- ELI-NP 20 MeV gamma beam by Thomson Scattering Magurele
- STAR 10 KeV X ray beam by TS- Cosenza
- HL-LHC High luminosity LHC studies CERN
- FCC Future Circular Collider studies -CERN
- ESRF EU Synchrotron radiation facility upgrade Grenoble

ELI-NP

20 MeV Gamma photons source based on Thomson scattering

EuroGammas consortium participants: INFN: LNF, Fe, Mi, CT, Fi and Roma1 **CNRS: LAL Orsay** Università "la Sapienza" Alsyom **ACP-Amplitude COMEB Scandinova**

EuroGammaS Organisational Breakdown Structure (OBS)

Hierarchical management structure, communication routes and reporting links

Gamma source layout: 720 MeV Linac

TW C-Band accelerating structures: design

Several new things have been fixed with respect to the TDR document:

- 1) Irises and radius of each cell for a Quasi CG field have been fixed;
- 2) Thermal analysis completed;
- New coupler design (race track) with compensation of the quadrupole field component;

4) Vacuum calculations (LNF/STFC)

C-BAND HOM DAMPED ACCELERATING STRUCTURES

[D. Alesini et al., thpri042, proc. of IPAC 14, 2014 and wepfi013, proc. of IPAC 13, 2013]

The linac energy booster of the European ELI-NP proposal foresees the use of 12, 1.8 m long, travelling wave C-Band structures, with a field phase advance per cell of $2\pi/3$ and a repetition rate of 100 Hz. Because of the **multi-bunch operation**, the structures have been designed with a dipole HOM damping system to avoid beam break-up (BBU). They are quasi-constant gradient structures with symmetric input couplers and a very effective damping of the HOM's in each cell. An innovative electromagnetic and mechanical design has been done to simplify the fabrication and to reduce their cost.

The structures are fabricated in modules (10 modules) that are brazed, then the Sic Absorbers are inserted and the full structure is finally brazed.

PARAMETER	VALUE
Туре	TW- quasi CG
Frequency (f _{RF})	5.712 [GHz]
Phase advance per cell	2π/3
Structure Length	1.8 m (102 cells)
Iris aperture (a)	6.8-5.8 mm
group velocity (v _g /c):	0.034-0.013
Quality factor (Q)	8800
Shunt imp. (r)	67-73 [MΩ/m]
RF input power	40 MW
E _{ACC_average} @ P _{IN} =40 MW	33 MV/m
Rep. Rate (f _{rep})	100 Hz
Average dissipated power	2.3 [kW]

TW accelerating structures fabrication (COMEB)

C-Band Accelerating structures with HOM dampers

Fabrication of the C-band structures

The modules have been brazed @ Comeb Company and INFN-LNF while the final two steps brazing have been done at LNL-INFN (Legnaro)

Fabrication of the C-band structures

Assembled structure before brazing

Final Structure under RF test

C-Band accelerating structure Low power RF tests and tuning

Procedure adopted for tuning D. Alesini et al., JINST 8 P10010, 2013

C-Band accelerating structure Low power RF tests and tuning

S Band GUN

The RF GUN of the ELI NP GBS will be a 1.6 cell gun of the BNL/SLAC/UCLA type implement several new features recently integrated in the new gun developed for the SPARC photo-injector

the structure has been realized without brazing but using special gaskets.

(request for a patent under submission...).

Test of the new SPARC gun successfully done at UCLA reaching 92 MV/m peak cathode electric field

S Band GUN

Parameters	Value
f _{res}	2.856 GHz
Q ₀	15000
E _{surf_peak_iris} /E _{cathode}	0.85
Coupling β	3
P _{in_peak} @E _{cathode} =120MV/m	13 MW
Filling time $\tau_{\rm F}$	560 ns
Frequency sep. 0 and π -mode	38 MHz
Pulsed heating @ 120 MV/m (2 μs RF pulse)	<60 °C
Reflected power	25%
Average dissipated power	1 kW

The STAR Project: Southern european Thomson source for Applied Research

STAR Infrastructure layout

Photoinjector Layout

Parameter	Value	
Input power	9.5 MW	
Output Energy	5 MeV	
Operating Frequency	2.856 GHz	
Normalized emittance*	≤ 1.0 micror	n at 500 pC
Repetition rate	Up to 100 H	łz
Quality factor Q ₀	13,800	
Shunt impedance R'shunt	60 MΩ/m	
Peak surface field	102 MV/m	
Peak cathode field	120 MV/m	
External coupling factor (β)	2.0	
Operating temperature	40° C	
Materials	OFHC grad flanges, Alu	le 1 copper, cross-forged 316L SST iminum stands
Magnetic permeability of flange material	< 1.05	
RF flange type	LIL	
Braze materials/steps	3-steps: 25/	/75, 35/65, 50/50 Au/Cu
Material certs	To be delive	ered to customer
Fasteners	All metric	
Warranty	1 year from	delivery

Vendor: RadiaBeam Europe

STAR @UNICAL

STAR infrastructure

STAR infrastructure

STAR Bunker

LNF Participation in HL-LHC Project

Participants (Accelerator Division)

- 1. Zobov Mikhail Local Coordinator
- 2. Alesini David
- 3. Drago Alessandro
- 4. Gallo Alessandro
- 5. Frasciello Oscar
- 6. Milardi Catia
- 7. Tomassini Sandro

Subjects to Study for LHC Upgrade (WP2)

- 1. Optics and beam-beam effects studies
- 2. Impedance calculations of LHC collimators
- 3. Electromagnetic design of 800 MHz cavity
- 4. Electromagnetic design and impedance studies for SPS coaxial slotted kicker
- 5. Collective effects studies (e-cloud)

LHC Collimators Impedance Calculations

O.Frasciello, S.Tomassini, M.Zobov

800 MHz Cavity Design Solutions for:

Single cavity

Two Cavities

A.Gallo, M.Zobov

Impedance of the Coaxial Slotted Kicker for SPS Intra-bunch feedback

Study of flat beam collisions for LHC upgrade

M.Zobov, D.Shatilov

FCC- Future Circular Collider study

- pp collider (FCC-hh) E_{beam} = 50 TeV
 -> defines infrastructure
 - B = 16 T ⇒ 100 km
 - B = 20 T ⇒ 80 km
- e⁺e⁻ collider (FCC-ee) E_{beam} = 40-175 GeV -> as intermediate step
- e-p option
- Infrastructure in the Geneva area
- International collaboration is taking shape: First ICB at CERN in September

CDR and cost review for the next European Strategy Update in 2018

FCC Horizon 2020 Design Study Proposal submitted to Brussels on 2 September 2014 and now APPROVED!

key aspects of 100 TeV energy frontier hadron collider: conceptual design, feasibility, implementation scenario

DA-LNF Collaboration with FCC

- MDI studies for FCC-ee (convenership)
- Contribution to MDI studies for FCC-hh (in the EuroCircol framework)
- Contribution to IR optics Design for FCC-ee
- Contribution to design of cryo-magnet beampipe system for FCC-hh (Res. Div., in the EuroCircol framework) INFN Mi & Ge
- Impedance Budget evaluation for FCC-ee (Univ. La Sapienza)

Machine Detector Interface

- Challenge : maximize performance (integrated luminosity) for experiments with tolerable experimental conditions.
- Minimize synchrotron radiation in the IR region : Bends as weak as possible and as far as possible from IP Quads have to be strong and close to IP
 - minimize offset from quad axis
 - be careful with vertical halo/tails

SR Monte Carlo: H.B. <u>CERN-OPEN-2007-018</u> integrated in G4

IR optical layout

 Ultra-low β* requires local correction of chromatic effects (copied from Linear Colliders).

○ Requires dipoles in the 'straight section' → additional SR.

• Lengthens the IR very significantly.

Example on this slide was designed by BINP with L* = 2m.

 Long sections are needed for the chromatic corrections.

The problem of dynamic aperture is coming from high order aberrations that are difficult to compensate.

 An when compensated in an ideal machine, how robust it is to machine errors.

Possible Contribution of DA-LNF

- The LNF Accelerator Division could give, in principle, a larger contribution to FCC than what it is foreseen now.
- However, many technical services of the DA are strongly involved in the internal and EU activities
- Possible larger contribution mainly on beam dynamics study for FCC-TDR

ARC VACUUM CHAMBER DESIGN for new ESRF low emittance Ring @ LNF-INFN

- Our proposal is to verify the feasibility of the arc vacuum chambers realization in aluminum instead of stainless steel.
- The aluminum would have many advantages summarized below:
- **1-Reduction of costs**
- 2-Reduction design time
- **3-Reduction of realization time**
- 4-Reduction of the time to acquire the material
- **5-Better performances for the "resistive wall" impedance**
- 6-Completely a-magnetic material
- **7-Better Performance from the vacuum point of view**

QUADRUPOLE CHAMBER DIPOLE CHAMBER

DIPOLE CHAMBER: DETAILS

-Calculated deformation of the gap due to the vacuum pressure: 40-70 μm -19.4 mm vertical gap (instead of di 20 mm). This distance can be easily changed into 20 mm

DIPOLE CHAMBER: ABSORBERS

Beam light 🛰

Two parallel cooling channels directly integrated on the chamber: total estimated power from the light beam 35 W

QUADRUPOLES CHAMBER: GENERAL

QUDRUPOLES CHAMBER: BELLOW

Excursion -20 mm in compression (to compensate the bake-out dilatation of the dipole chamber) and +5 mm in expansion Terminal flange with space for bpm

Possibility to cool the bellow

!Chaos @ BTF

but !CHAOS is more...

Premiale INFN "!CHAOS: A Cloud of Controls"

INFN-LNF (Laboratori Nazionali di Frascati) INFN-TV (Sezione di Tor Vergata) INFN-PG (Sezione di Perugia) INFN-CNAF (Centro Nazionale Tecnolgie Informatich INFN-PD (Padova) INFN-LNS (Laboratori Nazionali di Catania) National Instruments (NI)

ADF Solaris

a prototype of Control as a Service, an infrastructure at national level which realizes a cloud of services and procedures distributed and shared over the LAN/WAN, which allows the monitoring and control of any hardware device, system, or intelligent component and carries a network of resources to provide processing services, data logging and archiving.

!CHAOS: A Cloud of Controls

INFN - LNS

IFN - CNAF

INFN - LNF

Thank you for attention!

Miniworkshop su Acceleratori

Legnaro, February 17, 2015

External programs

- ELI-NP 66 M€ -> LNF: 2000 k€/y x 5 years
- STAR 7M€ -> LNF: 150 $k \in /y \times 3years$
- HL-LHC -> LNF: 100 k€/y x 2 years
- FCC 3 M \in -> LNF: 50 k \in /y x 3 years
- **ESRF** 100 M€ -> LNF: 100 k€/y x 1years

Scientific staff:	Permanent	Temporary	Fellow	PhD	TOT
	23	14	12	9	58

	TEMPO INDETERMINATO	TEMPO DETERMINATO	ASSEGNISTI/BORSISTI	OSPITI /DOTTORANDI ASSOCIATI ALTRE SEZIONI
JRAT ORIO	Serio Mario		MASCIO Roberto	
	Stella Angelo		PUTINO Francesco	
	GHIGO Andrea			
	Gallo Alessandro			
	Drago Alessandro			
ΓAB	Pellegrino Luigi			
	Buonomo Bruno			
	Stecchi Alessandro			
	Di Pirro Giampiero			
	Delle Monache Giovanni			
	Ligi Carlo			
÷ο	Guiducci Susanna	FOGGETTA Luca G.	FRASCIELLO Oscar	
н н н н н н н н н н н н н н н н н н н н	Biagini Maria Enrica	DE SANTIS Antonio		
LUM	Zobov Mikhail			
	Milardi Catia			
	Boscolo Manuela			
	Chiadroni Enrica	DEL FRANCO Mario	BIAGIONI Angelo	GIRIBONO Anna
AB +	Gatti Giancarlo	BINI Simone	ROVERE Andrea	FILIPPI Francesco
JROF	Ferrario Massimo	ANANIA Maria Pia	SHPAKOV Vladimir	GIORGIANNI Flavio
SPA	Vaccarezza Cristina	VILLA Fabio	POMPILI Riccardo	PALMER Dennis
			DANIELE Maddalena	CROIA Michele
	Alesini David	SABBATINI Lucia	BISESTO Fabrizio	CARDELLI Fabio
ÄR	Tomassini Sandro	DI PASQUALE Enrico	BORGESE Gianluca	PIERSANTI Luca
ELI-NP + ST		BELLAVEGLIA Marco	ROMEO Stefano	VANNOZZI Alessandro
		CIOETA Fara		MASSIMO Francesco
		DI GIOVENALE Domenico		
		FALONE Antonio		
AOS	Mazzitelli Giovanni	MICHELOTTI Andrea	GIOSCIO Eliana	
Ë		GARGANA Riccardo		

Technical Staff

Permanent 47

Temporary 8

	TEMPO INI	DETERMINATO	TEMPO DETERMINATO	ASSEGNISTI/BORSIS TI
	Coiro Oscar	Ceccarelli Riccardo	CASARIN Francesca	MASCIO Roberto
	Frasacco Umberto	Cecchinelli Alberto	DI RADDO Gianluca	PUTINO Francesco
	Gaspari Eugenio	Clementi Renato	ANELLI Federico	
	Mencarelli Claudio	Cacciotti Luciano	ROSSI Luis Antonio	
	Pella Stefano	Martinelli Moreno	STRABIOLI Serena	
	Pellegrini Donato	Piermarini Graziano	CHIMENTI Paolo	
	Battisti Antonio	Sorchetti Rossano		
	De Biase Sandro	Zarlenga Raffaele		
	Ceccarelli Giuseppe	Belli Maurizio		
0	De Giorgi Maurizio	Di Raddo Roberto		
ORI	Ermini Giuliano	Baldini Pietro		
АТС	Fontana Gianni	Quaglia Sergio		
OR	lungo Franco	Scampati Michele		
AB	Bolli Bruno	Sprecacenere Alfredo		
	Ceravolo Sergio	Baldini Gianfranco		
	Martelli Stefano	Ciuffetti Paolo		
	Sardone Franco	Galletti Francesco		
	Lollo Valerio	Giacinti Olimpio		
	Ferrazza Maria Rita	Marini Claudio		
	Pellegrino Luigi	Giabbai Manuela		
	Beatrici Angelo	Sensolini Giancarlo		
	Paris Marco	Sperati Maurizio		
	Troiani Mauro	Tranquilli Tullio		
	Zolla Alessandro			