Ab-initio calculations of few-nucleon reactions of astrophysical interest

Laura E. Marcucci

University of Pisa

INFN-Pisa

GIANTS 2015 April 28-30, 2015

Outline

• Thereotical framework

- Ab-initio methods for few-nucleon systems
- (Standard) phenomenological approach (PhenAp) vs.
 - Chiral effective field theory (χEFT)
- Results
 - Some tests:

- Electromagnetic structure of A = 2,3 nuclei
- Muon capture on light nuclei (2)

•
$$p + p \rightarrow d + e^+ + \nu_e$$

• $p + d \rightarrow {}^{3}\text{He} + \gamma$

Outlook

Theoretical framework: ab-initio studies

A-nucleon system
$$\leftrightarrow$$
 Observable X
 $H = T + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk}$ & nuclear currents j^{EW}

Ab-initio method and Ab-initio results

- Ab-initio method → obtain X by solving the relevant quantum many-body equations, without any uncontrolled approximation
- <u>controlled</u> approximations are allowed (expansion on a certain basis)
 → converged results = <u>ab-initio</u> results
- comparison of *ab-initio* results obtained with different *ab-initio* methods → benchmark calculations
- comparison of *ab-initio* results with data \rightarrow test of *H* and *j*^{EW}

FEW \Leftrightarrow *ab-initio* methods

W. Leidemann and G. Orlandini, Progr. Part. Nucl. Phys. 68, 158 (2013)

Laura E. Marcucci (Univ. Pisa & INFN-Pisa)

GIANT2015

Phenomenological approach

Nuclear interaction: $V_{NN} + V_{NNN}$

- Until $\simeq 15$ years ago: phenomenological potentials
 - $V_{NN} + V_{NNN}$ semi-phenomenological
 - V_{NN} with \simeq 40 parameters fitted to A=2 data $\rightarrow \chi^2/{
 m datum} \simeq 1$
 - V_{NNN} with 2-3 parameters fitted to B(A = 3, 4)

 \Rightarrow no simple connection to QCD

Electroweak currents in the phenomenological approach

CCR "exact" with AV18/UIX [L.E. Marcucci *et al.*, Phys. Rev. C **72**, 014001 (2005)] • $\mathbf{j}^A \rightarrow \text{no CCR} \Rightarrow \mathbf{MD}$ Largest contribution to $\mathbf{j}^A(\text{MD})$ from

 g_A^* fit to observable: GT_{exp} of tritium β -decay

Laura E. Marcucci (Univ. Pisa & INFN-Pisa)

GIANT2015

Chiral Effective Field Theory (χ EFT)

- QCD \rightarrow quarks and gluons ("high-energy" d.o.f.)
- Nuclear physics \rightarrow nucleons and pions ("low-energy" d.o.f.)
- EFT ightarrow processes with $E\simeq p\simeq m_\pi \ll \Lambda_{
 m QCD} \sim 1~{
 m GeV}$
 - \star "h-e" d.o.f. integrated out \rightarrow contact interactions with "l-e" d.o.f. and low-energy constants (LECs) obtained from experiment
 - \star perturbative theory: matrix elements $\propto {\cal O}(p/\Lambda_{\rm QCD})^{
 u}$

• $\chi \text{EFT} \rightarrow \text{EFT}$ with spontaneous breaking of QCD's χ -symmetry

• Regularization with cutoff function $\rightarrow \Lambda \simeq 414, 450, 500, 600~\text{MeV}$

Disadvantage: limited to processes with $E \sim 1-2\,m_\pi$

Advantages

- nuclear force "hierarchy" \rightarrow accurate $V_{NN} + V_{NNN}$ (N3LO/N2LO)
- consistent framework for interactions + currents (just add EW field among the d.o.f.)
- possibility to estimate the theoretical uncertainty

Similar power counting for the EW currents ($\mathbf{j}^{\gamma} \rightarrow \text{N3LO} \& \mathbf{j}^{A} \rightarrow \text{N2LO}$)

	AV18	N3LO	Exp.
B_d (MeV)	2.22457	2.22456	2.224574(9)
a_{n-n} (fm)	-18.487	-18.900	-18.9(4)
$^{1}a_{n-p}$ (fm)	-23.732	-23.732	-23.740(20)
$^{3}a_{n-p}$ (fm)	5.412	5.417	5.419(7)

 $\mathsf{N3LO}\equiv\mathsf{N3LO}\text{-}\mathsf{Idaho}$

A = 3 bound and low-energy scattering states

	³ H			³ He				
	В	rp	< V >	PD	В	rp	< V >	P_D
Potential	(MeV)	(fm)	(MeV)	(%)	(MeV)	(fm)	(MeV)	(%)
AV18	7.624	1.653	-54.351	8.510	6.925	1.872	-52.610	8.467
AV18+UIX	8.479	1.582	-59.754	9.301	7.750	1.771	-57.961	9.248
N3LO	7.854	1.655	-42.409	6.312	7.128	1.855	-40.917	6.313
N3LO+N2LO	8.474	1.611	-44.956	6.815	7.733	1.794	-43.478	6.818
Exp.	8.482	1.60	-	-	7.718	1.77	-	-

	AV18	AV18+UIX	N3LO	N3LO+N2LO	Exp.
$^{2}a_{n-d}$ (fm)	1.248	0.590	1.100	0.675	0.645 ± 0.010
$^{4}a_{n-d}$ (fm)	6.346	6.343	6.342	6.342	$6.35 {\pm} 0.02$
$^{2}a_{p-d}$ (fm)	1.134	-0.089	0.876	0.072	-
$^{4}a_{p-d}$ (fm)	13.662	13.662	13.646	13.647	_

A. Kievsky *et al.*, J. Phys. G: Nucl. Part. Phys. **35**, 063101 (2008) M. Viviani *et al.*, Phys. Rev. C **71**, 024006 (2005)

with the Hyperspherical Harmonics (HH) method - ab-initio method

	PhenAp	χ EFT	Exp.
$r_c(d)$ [fm]	2.119	$\textbf{2.126} \pm \textbf{0.004}$	2.130 ± 0.010
$\mu(d)$ [n.m.]	0.847	<u>0.8574</u>	0.8574
Q(d) [fm ²]	0.280	$\textbf{0.2836} \pm \textbf{0.0016}$	0.2859 ± 0.0003
$r_c(^{3}\text{He})$ [fm]	1.928	$\textbf{1.962} \pm \textbf{0.004}$	1.973 ± 0.014
<i>r_m</i> (³ He) [fm]	1.909	$1.920\ {\pm}0.007$	$1.976 \ {\pm} 0.047$
$\mu(^{3}\mathrm{H})$ [n.m.]	2.953	<u>2.979</u>	2.979
μ(³ He) [n.m.]	-2.125	-2.128	-2.128
$r_c(^4\text{He})$ [fm]	1.639	$\textbf{1.663} \pm \textbf{0.011}$	1.681 ± 0.004

L.E. Marcucci et al., arXiv:1504.05063, submitted to J. Phys. G: Nucl. Part. Phys.

Muon capture on A = 2, 3 nuclei

• $\mu^- + d \rightarrow n + n + \nu_{\mu} \longrightarrow$ capture rate in the doublet hyperfine state Γ^D • $\mu^- + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + \nu_{\mu} \longrightarrow$ total capture rate Γ_0

L.E. Marcucci et al., Phys. Rev. C 83, 014002 (2011)

L.E. Marcucci et al., Phys. Rev. Lett. 108, 052502 (2012)

The proton-proton weak capture reaction

S(E)in χ EFT and PhenAp • Energy range 2 keV – 100 keV

• PhenAp or χ EFT + FULL EM interaction

• pp $L \leq 1$ partial waves: ${}^{1}S_{0} + \text{all } P$ -waves

S(0) cumulative contributions (in 10^{-23} MeV fm²)

		${}^{1}S_{0}$	$\cdots + {}^{3}P_{0}$	$\cdots + {}^{3}P_{1}$	$\cdots + {}^{3}P_{2}$
	PhenAp	4.000(3)	4.003(3)	4.015(3)	4.033(3)
)	χ EFT	4.008(6)	4.011(6)	4.020(6)	4.030(6)

$$S(0)=$$
(4.030 \pm 0.006) \times 10⁻²³ MeV fm²
vs.
 $S(0)^{SFII}=$ (4.01 \pm 0.04) \times 10⁻²³ MeV fm²

SFII: E.G. Adelberger et al., Rev. Mod. Phys. 83, 195 (2011)

L.E. Marcucci et al., Phys. Rev. Lett. 110, 192503 (2013)

Effects on

- age of mid and old stellar clusters (1-12 Gyr)
- standard solar model predictions

E. Tognelli et al., Phys. Lett. B 742, 189 (2015)

	MSV13(S+P)	MSV13(S)	NACRE99	AD11	JINA
	reference	r	elative differ	rences	
T _c [10 ⁷ K]	1.54794	-1%	-3‰	-2‰	-1%
$\Phi^{\nu}_{\rm DD}$ [10 ¹⁰]	6.020	1‰	2‰	2‰	1‰
$\Phi_{ m pep}^{ u}$ [10 ⁸]	1.446	-2‰	-6%	-2%	-1%
$\Phi_{ m hep}^{ u}$ [10 ³]	8.584	-1%	-3‰	< 1%	2‰
$\Phi^{ u}_{ m Be-7}$ [10 ⁹]	4.503	-1%	-3%	-1%	-9%
$\Phi_{\rm B-8}^{\overline{\nu}}$ [10 ⁶]	3.694	-3%	-7%	-4%	-2%
$\Phi_{\rm N-13}^{\overline{\nu}}$ [10 ⁸]	2.417	-2%	-6%	-3%	-1%
$\Phi_{\rm O-15}^{\nu}$ [10 ⁸]	1.811	-3%	-8%	-4%	-2%
$\Phi_{ m F-17}^{ u}$ [10 ⁶]	3.373	-3%	-8%	-4%	-2%

The $p + d \rightarrow {}^{3}\mathrm{He} + \gamma$ reaction

SFII: E.G. Adelberger *et al.*, Rev. Mod. Phys. **83**, 195 (2011)

Planck Collab., arXiv:1501.01589 (2015)

GIANT2015

0.026

- New measurement scheduled by the LUNA Collab. @ LNGS in the energy range of interest for BBN
- New calculation in PhenAP
- New calculation in χEFT

PRELIMINARY RESULTS

PRELIMINARY RESULTS: zoom for E = 0 - 250 keV

<i>E_{cm}</i> [keV]	Δ -PhenAp*	$\mathbf{j}^{ ext{MEC}}$	Δ - χ EFT
35	+8 %	+24 %	+4 %
70	+8 %	+20 %	+5%
95	+8 %	+18~%	+6%
120	+8 %	+17~%	+6%
145	+7 %	+16~%	+6%
170	+7 %	+16~%	+6%
195	+7 %	+16~%	+6%
220	+7 %	+15~%	+7 %
245	+6 %	+15~%	+7 %

- Δ -PhenAp* \equiv |2015-PhenAp SFII|/SFII
- Δ - χ EFT $\equiv |2015-\chi$ EFT 2015-PhenAp|/2015-PhenAp

LUNA experiment at 3-6 % accuracy can discriminate!!

WARNING: STILL PRELIMINARY (\chiEFT) RESULTS

Outlook

"Reasonably" near future

- A = 4 radiative and weak captures: $p + {}^{3}\text{H} \rightarrow {}^{4}\text{He} + \gamma \& p + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + e^{+} + \nu_{e}$ (the *hep* reaction)
- ν -scattering on light nuclei (A = 2 4)
- μ -capture on ³He in other channels: $\mu^{-} + {}^{3}\text{He} \rightarrow n + d + \nu_{\mu} \& \mu^{-} + {}^{3}\text{He} \rightarrow n + n + p + \nu_{\mu}$ (with Faddeev method)
- A = 6 as a 3-body system: $\alpha + d \rightarrow {}^{6}\text{Li} + \gamma$
- "Our" *ab-initio* method above breakup-threshold: first steps in E. Garrido *et al.*, Phys. Rev. C **90**, 1 (2014)

Less near future

- "Our" *ab-initio* method for *A* > 4 systems (especially *A* = 5, 6) with realist interactions
- Start to work with other methods (for instance GFMC)

$\mu^- + {}^{3}\mathrm{He} \rightarrow n + d + \nu_{\mu} \& \mu^- + {}^{3}\mathrm{He} \rightarrow n + n + p + \nu_{\mu}$

Laura E. Marcucci (Univ. Pisa & INFN-Pisa)

GIANT2015

April 28-30, 2015 23 / 42

SPARES

The pp-chain

The Big-Bang Nucleosynthesis

Total cross-sections $\sigma(E) \rightarrow \text{astrophysical } S$ -factor S(E)

$$S(E) = E \sigma(E) \exp(2\pi\eta); \qquad \eta = \frac{Z_1 Z_2 \alpha}{v_{rel}}$$

$$r_{12} = \frac{n_1 n_2}{1 + \delta_{12}} \langle \sigma v_{rel} \rangle$$

$$\langle \sigma v_{rel} \rangle \propto \int_0^\infty E \sigma(E) \exp\left(-\frac{E}{kT}\right) dE$$

$$\rightarrow \int_0^\infty S(E) \exp\left(-2\pi\eta - \frac{E}{kT}\right) dE$$

Typically:

•
$$E_0 = \underline{\text{Gamow peak energy}} (\simeq \text{few keV})$$

• $S(E) \rightarrow \text{Taylor expansion} \Rightarrow S(0), S'(0), S''(0)$, etc. etc. etc.

Why few-nucleon and how few are few?

The Hyperspherical Harmonics (HH) method

Bound states

$$\Psi^{JJ_z} = \sum_\mu oldsymbol{c}_\mu \Psi_\mu$$

• $\Psi_{\mu}
ightarrow$ known functions (spin-isospin HH functions)

• Rayleigh-Ritz var. principle: $\delta_c \langle \Psi^{JJ_z} | H - E | \Psi^{JJ_z} \rangle = 0$ \Rightarrow Solve for E and c_{μ}

Scattering states

$$\Psi_{LSJ} = \Psi_{core}^{LSJ} + \Psi_{asym}^{LSJ}$$

•
$$\Psi_{core}^{LSJ} = \sum_{\mu} c_{\mu} \Psi_{\mu}$$

• $\Psi_{asym}^{LSJ} \propto \Omega_{LS}^{R} + \sum_{L'S'} R_{LL',SS'} \Omega_{L'S'}^{I}$
• Kohn var. principle: $[R_{LL',SS'}] = R_{LL',SS'} - \langle \Psi_{L'S'J} | H - E | \Psi_{LSJ} \rangle$
 $\Rightarrow R_{LL',SS'} \rightarrow \text{phase-shifts and mixing angles} \rightarrow \text{scatt. length}$

29 / 42

Convergence of the method

 $B(^{3}H)$ with first 3 spin-isospin channel – N3LO

Laura E. Marcucci (Univ. Pisa & INFN-Pisa)

Nuclear EW currents in $\chi {\rm EFT}$

History

• Park *et al.* in heavy-baryon χ PT (HB χ PT) \rightarrow since \simeq 1995

\mathbf{j}^{γ} • Pastore *et al.* in time-ordered perturbation theory (TOPT) \rightarrow since 2009

- Kölling *et al.* with the unitary transform method
 → in parallel since 2009
- Park et al. in HB χ PT \rightarrow since $\simeq 2000$
 - Baroni *et al.* in TOPT \rightarrow work in progress

To be remarked:

- Park *et al.* currents ready BEFORE the χ EFT potentials \Rightarrow "hybrid" χ EFT
- Park et al.: only available FULL set

Power counting for \mathbf{j}^γ

$$\begin{array}{c|c} \mathcal{O}(Q^{-2}) & |_{\mathbb{Z}_{2}} \\ \end{array} & \mathbf{j}^{(-2)} \propto [e_{N}(1)(\mathbf{p}_{1}' + \mathbf{p}_{1}) + i\mu_{N}(1)\sigma_{1} \times \mathbf{q}] \times \delta(\mathbf{p}_{2}' - \mathbf{p}_{2}) + 1 \leftrightarrow 2 \\ \\ \mathcal{O}(Q^{-1}) & |_{\mathbb{Z}_{2}^{-}} - | & |_{\mathbb{Z}_{2}^{-}} - | & |_{\mathbb{Z}_{2}^{-}} - | & |_{\mathbb{Z}_{2}^{-}} - | & |_{\mathbb{Z}_{2}^{-}} + |$$

- Similar results between Pastore et al. and Kölling et al.
- Differences with Park et al.

Park et al. $\chi {\rm EFT}~{\rm EM}$ currents should be reconsidered

• LECs fitted to selected EM observables $[\sigma_{np}, \mu_d, \mu^{S/V}(A=3)]$

Power counting for \mathbf{j}^A

Note:

- \$\mathcal{O}(Q^1)\$: loop and two-pion-exchange contributions (not yet calculated)
- Park *et al.* only available model at $\mathcal{O}(Q^0)$ \rightarrow one LEC - d_R

$$d_R = rac{M_N}{\Lambda_\chi g_A} c_D + rac{1}{3} M_N (c_3 + 2c_4) + rac{1}{6}$$

Gårdestig and Phillips, PRL **96**, 232301 (2006) Gazit *et al.*, PRL **103**, 102502 (2009)

• fit c_D and c_E (in TNI at N2LO) to B(A = 3) and GT_{Exp}

 $\Rightarrow \{c_D; c_E\}_{\rm MAX} \text{ and } \{c_D; c_E\}_{\rm MIN}$

Model	Λ	c _D	c _E	B(⁴ He)	² a _{nd}
	[MeV]			[MeV]	[fm]
N3LO/N2LO*	500	1.0	-0.029	28.36	0.675
N3LO/N2LO	500	-0.12	-0.196	28.49	0.666
N3LO/N2LO	600	-0.26	-0.846	28.64	0.696
Exp.				28.30	0.645(10)

Marcucci et al., PRL 108, 052502 (2012); Viviani et al., PRL 111, 172302 (2013)

Nuclear transition operators in χ EFT at N3LO

Weak operators:
$$\rho^{(V/A)}, \mathbf{j}^{(V/A)}$$

 $\text{CVC} \Rightarrow \rho^{V}/\mathbf{j}^{V} \rightarrow \rho^{\gamma}/\mathbf{j}^{\gamma}$

Park *et al.*, PRC **67**, 055206 (2003) Song *et al.*, PRC **79**, 064002 (2009)

only available $\chi \mathsf{EFT}$ weak transition operators

- One-body operators: NRR of $j_i^\mu
 ightarrow {\it O}(1/m^2)$
- Two-body $\rho^{(A)}$: soft π -exchange dominant

• Two-body
$$\rho^{(V)} = 0$$
 at N3LO

• Two-body
$$\mathbf{j}^{(V)}$$
: CVC \rightarrow EM current:
 $1\pi + 1\pi C + 2\pi + CT \rightarrow \text{two LECs} (g_{4S} \& g_{4V}) \Rightarrow$
from $\mu(^{3}\text{H} - {}^{3}\text{He})$

• Two-body
$$\mathbf{j}^{(A)}$$
: $1\pi + CT \rightarrow \text{one LEC}(d_R) \Rightarrow$
from GT_{exp} of tritium β -decay

Gaussian regulator $\rightarrow \Lambda \simeq 500-800~\text{MeV}$

Nuclear transition operators in PMA

- One-body operators: NRR of $j_i^\mu
 ightarrow {\it O}(1/m^2)$
- Two-body $\rho^{(V)}$ and $\mathbf{j}^{(V)}$: CVC \rightarrow EM operators (MEC+ $\mathbf{j}^{(V)}(\Delta)$)

	$\mu(^{3}H)$	$\mu(^{3}\text{He})$	
1b	2.5745	-1.7634	
Full	2.9525	-2.1299	AV18+UIX
Exp.	2.9790	-2.1276	\Rightarrow Full=1b+2b+3b

[1] Marcucci et al., PRC 72, 014001 (2005)

- Two-body $\rho^{(A)}$: PCAC + low-energy theorem $\rightarrow \pi$ -exchange and short-range terms
- Two-body $\mathbf{j}^{(A)}$: π and ρ -exchange, $\pi\rho$ mechanism, and $\mathbf{j}^{(A)}(\Delta)$

Largest contribution to $\mathbf{j}^{(A)}(\Delta)$ from

 g_A^* fit to observable: GT_{exp} of tritium $\dot{\beta}$ -decay

The proton-proton weak capture reaction

• Energy range 2 keV – 100 keV

S(E)in χ EFT and PhenAp

PhenAp [AV18] or χEFT [N3LO] + FULL EM interaction

• $pp \ L \leq 1$ partial waves: ${}^{1}S_{0} + all \ P$ -waves

$S(0) - {}^{1}S(0)$	50
$(in 10^{-23})$	MeV fm ²)

		$V_{nucl} + V_{Coul}$	$V_{nucl} + V_{EM}$
	PhenAp-IA	3.99	3.96
	PhenAp-FULL	4.03	4.00
-	χ EFT(500)-IA	3.96	3.94
	χ EFT(500)-FULL	4.03	4.01
-	χ EFT(600)-IA	3.94	3.93
_	χ EFT(600)-FULL	4.01	4.01

- \bullet agreement with $S^{\rm SFII}(0){=}$ 4.01(1 \pm 0.009) \times 10 $^{-23}$ MeV fm 2
- V_{EM} - $V_{Coul} \rightarrow \leq 1$ % effect
- agreement PMA- χ EFT
- very small cutoff dependence (<1 %)
- SFII: Adelberger et al., RMP 83, 195 (2011)

Cumulative contributions to S(0)

	${}^{1}S_{0}$	$\cdots + {}^{3}P_{0}$	$\cdots + {}^{3}P_{1}$	$\cdots + {}^{3}P_{2}$
PMA	4.000(3)	4.003(3)	4.015(3)	4.033(3)
χ EFT(500)	4.008(5)	4.011(5)	4.020(5)	4.030(5)
χ EFT(600)	4.007(5)	4.010(5)	4.019(5)	4.029(5)

- *P*-waves contribution to $S(0) \simeq 1$ %
- theoretical uncertanity very small
- very small cutoff dependence (< 1 %)

$$S(0)=4.03(1 \pm 0.006) \times 10^{-23} \text{ MeV fm}^2$$

vs.
 $S(0)^{SFII}=4.01(1 \pm 0.009) \times 10^{-23} \text{ MeV fm}^2$

- Stellar cluster: stars with same age, same chemical composition and same distance from Earth, but different masses ⇒ from the same starting nebula
- Age determined through the luminosity of the point corresponding to the central H-exhaustion (TO for Sun-like stars or OC for larger mass stars)
- Stars in clusters older than $\sim 10 \text{ Gyr} \rightarrow pp \text{ chain}$ during the MS phase
- Stars close to the TO phase in younger clusters→ CNO-cycle (and small contribution from pp chain)

\Rightarrow pp reaction efficiency is CRUCIAL

Age determination in stellar cluster (II)

Laura E. Marcucci (Univ. Pisa & <u>INFN-Pisa)</u>

GIANT2015

April 28-30, 2015 41 / 42

