Big Bang Nucleosynthesis: a short review

F.L. Villante – Università dell' Aquila and INFN-LNGS

The Physics of BBN

The abundances of ⁴He, D, ³He, ⁷Li produced by BBN depends on the following

quantities:

Baryon density

$$\eta \equiv \frac{n_{\rm B}}{n_{\gamma}}$$

$$\eta \equiv \frac{n_{\rm B}}{n_{\gamma}} \qquad \Omega_{\rm B} h^2 \approx 3.7 \ 10^7 \, \eta$$

Hubble expansion rate

$$H \approx g_*^{1/2} G_N^{1/2} T^2$$

$$g_* = 10.75 + \frac{7}{4} (N_v - 3)$$

$$\Gamma_{W}$$
 = Weak rate (ν_{e} +n \longleftrightarrow p+e)

Deuterium

bottleneck

 $T_{\rm N} \approx -\frac{B_{\rm d}}{\ln{(n)}} \approx 0.1 \text{ MeV}$

- Essentially all neutrons surviving till the onset of BBN used to build ⁴He
- ❖ D, ³He, ⁷Li are determined by a complex nuclear reaction network.

Accuracy of theoretical calculations

Accuracy of ⁴He calculation at the level of 0.1% (but beware of neutron lifetime ...).

High precision codes (Lopez & Turner 1999, Esposito et al. 1999) take directly into account effects due to:

- zero and finite temperature radiative processes;
- non equilibrium neutrino heating during e[±] annihilation;
- finite nucleon masses;
-

These effects are included "a posteriori" in the "standard" code (Wagoner 1973, Kawano 1992).

Theoretical uncertainties

Reaction rate uncertainties translate into uncertainties in theoretical predictions:

Monte-Carlo evaluation of uncertainties Krauss & Romanelli 90, Smith et al 93, Kernan & Krauss 94

Semi-analytical evaluation of the error matrix Fiorentini, Lisi, Sarkar, Villante, 98 Lisi, Sarkar, Villante, 00

Re-analysis of nuclear data

Nollet & Burles 00, Cyburt et al 01, Descouvement et al. 04, Cyburt et al. 04, Serpico et al. 04, Coc et al. 11, Coc et al. 14 NACRE Coll. Database

Recent new data and evaluations

 $p(n,\gamma)D$: Ando et al. 06

 2 H(p, γ) 3 He: LUNA

 3 He(α , γ) 7 Be: LUNA, Cyburt et al 08

²H(d,p)³H and ²H(d,n)³He: Leonard et al. 06

 2 H $(\alpha,\gamma)^{6}$ Li: LUNA

Sub-leading reactions (see Serpico et al. 04)

 $^{4}\text{He}(d, \gamma)^{6}\text{Li}$ $^{6}\text{Li}(p, \alpha)^{3}\text{He}$ $^{7}\text{Be}(n, \alpha)^{4}\text{He}$ $^{7}\text{Be}(d, p)2$ ^{4}He

BBN without computers:

(Esmailzaldeh et al 1991)

The abundance of a generic element evolves according to the rate equations:

$$\frac{dY_i}{dt} = n_{\rm B} \left[\sum_{j,k} Y_j Y_k \langle \sigma_{jk} v \rangle_T - Y_i \sum_l Y_l \langle \sigma_{il} v \rangle_T \right]. \qquad Y_i(T) = \frac{C_i(T)}{D_i(T)}$$

A good approx. is obtained by studying the quasi-fixed point of the above equation:

$$Y_i \sim \frac{C_i}{D_i} \Big|_{T=T_{i,\mathrm{f}}}$$

$$\frac{T_{i,\mathrm{f}} = \textit{Freeze-out temperature}}{D_i,\,C_i \ll H}$$
 $C_\mathrm{i} = n_\mathrm{B} \sum_{j,k} Y_j \, Y_k \, \langle \sigma_{jk} \, v \rangle_T$

The abundance Y_i of each element is approximately determined by a selected number of *creation and destruction processes* at a characteristic freeze-out temperature $T_{i,f}$ (*10-100 keV).

The role of nuclear reactions

Logarithmic derivatives of the primordial abundances Y_i wrt the rates of the nuclear cross sections S_i

$$\lambda_{i,j} \equiv \frac{\partial \ln Y_i}{\partial \ln S_j}$$

Leading reactions

For $\eta \approx 5 \ 10^{-10}$, we obtain:

Reaction	4 He	d	$^7{ m Li}$	³ He
n lifetime	0.72	0.41	0.39	0.14
$p(n,\gamma)d$	0.00	-0.19	1.37	0.09
$d(p,\gamma)^3$ He	0.00	-0.34	0.61	0.40
$d(d,n)^3$ He	0.01	-0.53	0.69	0.19
d(d,p)t	0.01	-0.46	0.06	-0.26
3 He $(n,p)t$	0.00	0.02	-0.28	-0.17
$t(d,n)^4$ He	0.00	0.00	-0.01	-0.01
$^3{\rm He}(d,p)^4{\rm He}$	0.00	-0.02	-0.74	-0.74
$^3{\rm He}(\alpha,\gamma)^7{\rm Be}$	0.00	0.00	0.98	0.00
$t(\alpha,\gamma)^7 { m Li}$	0.00	0.00	0.02	0.00
$^7\mathrm{Be}(n,p)^7\mathrm{li}$	0.00	0.00	-0.71	0.00
$^{7}\mathrm{Li}(p,\alpha)^{4}\mathrm{He}$	0.00	0.00	-0.04	0.00

Based on Fiorentini, Lisi, Sarkar and Villante, 1998

Note that: Sub-leading reactions give small log-derivatives but may be affected by large uncertainties and still contributes to the error budget.

Theoretical error budget

(Over)simplifying from Coc et al. JCAP 2014: The contribution of different reaction rates to theoretical error budget can be expressed as:

$$C_{j,k} \sim \frac{1}{\sigma_{j,\text{tot}}} \left[Y_j \frac{\partial \ln Y_j}{\partial \ln S_k} \, \delta S_k \right] \sim (\pm) \frac{\sigma_{j,k}}{\sigma_{j,\text{tot}}}$$

Table 5. Correlations with ⁴He.

$$\delta Y_{2} \approx 3\% \begin{array}{|c|c|c|c|c|c|}\hline Reaction & C_{D,k} \\\hline D(p,\gamma)^{3}He & -0.7790 & \approx 5\% \text{ [desO4]} \\\hline D(d,n)^{3}He & -0.4656 & \approx 2-3\% \text{ [leoO6]} \\\hline D(d,p)^{3}H & -0.4082 & \approx 2-3\% \text{ [leoO6]} \\\hline \end{array}$$

Table 6. Correlations with D.

Table 7. Correlations with ³He.

	Reaction	$C_{{ m Li}7,k}$	
	$^{7}\mathrm{Be}(\mathrm{n},\alpha)^{4}\mathrm{He}$	-0.3057	factor ten [???]
	7 Be(d,p)2 4 He	-0.2079	
δY ₇ ≈ 8%	$D(p,\gamma)^3$ He	0.4043	≈ 5% [des04]
017 : 070	$D(d,n)^3He$	0.1547	≈ 2-3% [leo06]
	$^{3}\mathrm{He}(\mathrm{d,p})^{4}\mathrm{He}$	-0.2232	
004	$^{3}\mathrm{He}(\alpha,\gamma)^{7}\mathrm{Be}$	0.7107	≈ 8% [Cyb08]

Table 8. Correlations with ⁷Li.

[des04] - Descouvement et al., At. Data and Nucl. Data Tables, 2004

[cyb08] - Cyburt and Davids, Phys Rev C, 2008

[leo06] - Leonard et al., Phys Rev C 2006

Theory. vs. observations

Helium 4: determined by extrapolating to Z=0 the (Y,Z) relation or by averaging Y in extremely metal poor HII regions (N and O used as metallicity tracers)

$$Y_{
m p}=0.2465\pm0.0097$$

Aver et al, JCAP 2013

Theory. vs. observations

Helium 4: determined by extrapolating to Z=0 the (Y,Z) relation or by averaging Y in extremely metal poor HII regions (N and O used as metallicity tracers)

$$Y_{
m p}=0.2465\pm0.0097$$

Aver et al, JCAP 2013

Deuterium: observed in the high resolution spectra of QSO absorption systems at high redshift:

$${\rm D/H|_p} = (2.53 \pm 0.04) \times 10^{-5}$$
 Cooke et al, ApJ 2014

Deuterium

The primordial abundance is obtained from the weighted mean of 5 damped Lyman- α systems:

$$D/H|_p = (2.53 \pm 0.04) \times 10^{-5}$$

To be compared with the predicted value for $\eta = \eta_{CMB}$:

$${
m D/H|_p} = (2.65 \pm 0.08) imes 10^{-5}$$
 Coc et al. JCAP 2014

The two values above are consistent at 1σ

- $N_{\rm eff} = 3.28 \pm 0.28$
- A_2 = rescaling factor of ${}^2H(p,\gamma)^3He \ge 1$ (1σ)

Theory. vs. observations

Helium 4: determined by extrapolating to Z=0 the (Y,Z) relation or by averaging Y in extremely metal poor HII regions (N and O used as metallicity tracers)

$$Y_{
m p}=0.2465\pm0.0097$$

Aver et al, JCAP 2013

Deuterium: observed in the high resolution spectra of QSO absorption systems at high redshift:

$${\rm D/H|_p} = (2.53 \pm 0.04) \times 10^{-5}$$
 Cooke et al, ApJ 2014

Lithium-7: observed in metal poor (Pop II) stars of our galaxy. Abundance does not vary significantly in stars with metallicities < 1/30 of solar (Spite Plateau)

$${\rm Li/H}|_{\rm p} = (1.6 \pm 0.3) \times 10^{-10}$$

Sbordone et al, A&A 2010

Lithium-7

Meltdown of the spite plateau at low metallicity (<1/1000 Solar)

(?) Something is depleting Lithium in very metal poor stars

The primordial value is obtained from stars with -2.8 < [Fe/H] < -1.5

$$Li/H|_p = (1.6 \pm 0.3) \times 10^{-10}$$

$$[\mathrm{Fe/H}] \equiv \log_{10}[(\mathrm{Fe/H})/(\mathrm{Fe/H})_{\odot}]$$

Theory. vs. observations

Helium 4: determined by extrapolating to Z=0 the (Y,Z) relation or by averaging Y in extremely metal poor HII regions (N and O used as metallicity tracers)

$$Y_{
m p} = 0.2465 \pm 0.0097$$
 Aver et al, JCAP 2013

Deuterium: observed in the high resolution spectra of QSO absorption systems at high redshift:

$${\rm D/H|_p} = (2.53 \pm 0.04) \times 10^{-5}$$
 Cooke et al, ApJ 2014

Lithium-7: observed in metal poor (Pop II) stars of our galaxy. Abundance does not vary significantly in stars with metallicities < 1/30 of solar (Spite Plateau)

$${\rm Li/H}|_{\rm p} = (1.6 \pm 0.3) \times 10^{-10}$$

Sbordone et al, A&A 2010

The Lithium-7 problem:

Observational values are factor 3 lower than required to obtain concordance

Primordial nucleosynthesis of CNO (and other) elements

(from Coc et al., JCAP 2014; see also locco et al. JCAP 2007)

Primordial abundance of ⁶Li:

$$^{6}\text{Li/H} = (0.9 - 1.8) \times 10^{-14}$$

Error budget dominated by $D(\alpha,\gamma)^6Li$ reaction recently measured by LUNA

The claim of ⁶Li/H plateau at 10⁻¹¹ has not been confirmed

Primordial abundance of CNO is at the level of:

$$CNO/H = (5 - 30) \times 10^{-16}$$

At $\eta = 6 \times 10^{-10}$, ⁷Li is mainly produced from ⁷Be (e⁻+⁷Be \rightarrow ⁷Li + ν_e at "late" times):

$$Y_{
m Li} \sim Y_{
m Be} \sim \left. rac{C_{
m Be}}{D_{
m Be}}
ight|_{T=T_{
m Be,f}}$$
 ${\sf T_{
m Be,f}}pprox {\sf 50~keV}$

The dominant ⁷Be production mechanism is through the reaction ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$

→ Studied in detail both experimentally (LUNA) and theoretically. The cross section is known to 7% uncertainty.

The dominant ⁷Be destruction channel is through the process ⁷Be(n,p)⁷Li

→ Experimental data obtained from direct data and reverse reaction. R matrix fit to expt. data provide the reaction rate with 1% accuracy.

A nuclear physics solution to the ⁷Li problem?

A formalism to describe the response of ⁷Li to a generic (temperature dependent) modification of the nuclear reaction rates.

Motivated by:

$$Y_{
m Li} \sim Y_{
m Be} \sim \left. \frac{C_{
m Be}}{D_{
m Be}} \right|_{T=T_{
m Be,f}}$$

We write:

$$\delta X_{\mathrm{Li}} = \int \frac{dT}{T} K(T) \, \delta D_{\mathrm{Be}}(T)$$

where:

$$X_{
m Li}=rac{1}{Y_{
m Li}}$$
 inverse 7 Li abundance $\delta X_{
m Li}=rac{X_{
m Li}}{\overline{X}_{
m Li}}-1$ $\delta D_{
m Be}(T)=rac{D_{
m Be}(T)}{\overline{D}_{
m Be}(T)}-1$

A nuclear physics solution to the ⁷Li problem?

A formalism to describe the response of ⁷Li to a generic (temperature dependent) modification of the nuclear reaction rates.

Motivated by:

$$Y_{
m Li} \sim Y_{
m Be} \sim \left. \frac{C_{
m Be}}{D_{
m Be}} \right|_{T=T_{
m Be,f}}$$

We write:

$$\delta X_{\mathrm{Li}} = \int \frac{dT}{T} K(T) \, \delta D_{\mathrm{Be}}(T)$$

where:

$$X_{
m Li} = rac{1}{Y_{
m Li}}$$
 —— inverse 7 Li abundance

$$\delta X_{\rm Li} = \frac{X_{\rm Li}}{\overline{X}_{\rm Li}} - 1$$

$$\delta D_{\mathrm{Be}}(T) = \frac{D_{\mathrm{Be}}(T)}{\overline{D}_{\mathrm{Be}}(T)} - 1$$

$$T \simeq 10 - 60 \text{ keV}$$

Based on Broggini, Canton, Fiorentini, FLV, 2012

The ⁷Li synthesis – the role of different channels

$$\delta D_{\mathrm{Be}}(T) = \frac{D_{\mathrm{Be}}(T)}{\overline{D}_{\mathrm{Be}}(T)} - 1$$

Considering that:

$$\overline{D}_{\mathrm{Be}}(T) \simeq n_{\mathrm{B}} \overline{Y}_{\mathrm{n}}(T) \langle \overline{\sigma}_{\mathrm{np}} v \rangle_{T}$$

$$D_{\mathrm{Be}}(T) = n_{\mathrm{B}} \sum_{a} Y_{a}(T) \langle \sigma_{a} v \rangle_{T}$$

$$\overline{\sigma}_{\rm np} = {\rm cross\ section\ of}\ ^7{\rm Be} + n \rightarrow ^7{\rm Li} + p$$

Dominant ⁷Be destruction channel (97% of the total)

$$\sigma_{\rm a}={
m cross\ section\ of\ }^7{
m Be}+a o{
m anything}$$
 Indicates a generic additional ⁷Be destructing process

One obtain:

$$\delta X_{\rm Li} = \sum_{a} \int \frac{dT}{T} K_a(T) \frac{\langle \sigma_a v \rangle_T}{\langle \overline{\sigma}_{\rm np} v \rangle_T}$$

where:

$$K_a(T) = K(T) \frac{\overline{Y}_a(T)}{\overline{Y}_n(T)}$$

The requirements to solve the ⁷Li problem

$$R_a \equiv \frac{\langle \sigma_a v \rangle_T}{\langle \overline{\sigma}_{np} v \rangle_T} \quad at \quad T \simeq 10 - 60 \,\text{keV}$$

To obtain a reduction of the ⁷Li abundance by a factor 2 or more:

- $R_{\rm n} \ge 1.5$ for additional reactions in the $^7{\rm Be} + n$ channel
- $R_d \ge 0.01$ for reactions in the ⁷Be + d channel
- $R_t \ge 1.5$ for reactions in the ⁷Be + t channel
- $R_{\text{He}3} \ge 0.03$ for reactions in the $^{7}\text{Be} + ^{3}\text{He}$ channel
- $R_{\text{He}4} \ge 4 \times 10^{-6}$ for reactions in the $^7\text{Be} + ^4\text{He}$ channel

Suppressed by Coulomb barrier

Note that:

The cross section of ⁷Be(n,p)⁷Li reaction is extremely large

$$\sigma_{\rm np}(50{\rm keV}) \simeq 9\,{\rm barn}$$

Comparable with unitarity bound

The (⁷Be+n) channel

$$^7\mathrm{Be}(n,p)^7\mathrm{Li}$$

- ✓ Dominant contribution to ⁷Be destruction (97%). Very well studied;
- ✓ Data obtained either from direct measurements or from reverse reaction;
- ✓ R-matrix fits to expt. data determine the reaction rate with ≈ 1% accuracy;
- Extremely large cross section (close to unitarity bound).

$$^7\mathrm{Be}(n,\alpha)^4\mathrm{He}$$

- ✓ No experimental data exist in the BBN energy range;
- ✓ Upper limit $\sigma_{n\alpha}$ < 1mb at thermal energies from Bassi et al 1963;
- ✓ Old estimate from Fowler (1967) used in BBN codes (with factor 10 uncertainty);
- ✓ Second most important contribution to ⁷Be destruction (2.5 %);
- ✓ (One of the) largest contribution to ⁷Li error budget;

The (⁷Be+n) channel

$$^7\mathrm{Be}(n,p)^7\mathrm{Li}$$

- ✓ Dominant contribution to ⁷Be destruction (97%). Very well studied;
- ✓ Data obtained either from direct measurements or from reverse reaction;
- ✓ R-matrix fits to expt. data determine the reaction rate with ≈ 1% accuracy;
- ✓ Extremely large cross section (close to unitarity bound).

$$^7\mathrm{Be}(n,\alpha)^4\mathrm{He}$$

- ✓ No experimental data exist in the BBN energy range;
- ✓ Upper limit σ_{nq} < 1mb at thermal energies from Bassi et al 1963;
- ✓ Old estimate from Fowler (1967) used in BBN codes (with factor 10 uncertainty);
- ✓ Second most important contribution to ⁷Be destruction (2.5 %);
- ✓ (One of the) largest contribution to ⁷Li error budget;

It is unlikely that ${}^7{
m Be}(n,lpha){}^4{
m He}$ can become comparable to ${}^7{
m Be}(n,p){}^7{
m Li}$...

Due to parity conservation of strong interactions:

■
$$^7\mathrm{Be}(n,\alpha)^4\mathrm{He}$$
 requires p-wave (l=1) collision; $\sigma_{\mathrm{n}\alpha}/\sigma_{\mathrm{np}} \sim T_1/T_0 \sim 2\,\mu\,E\,R^2 \leq 0.2$ $(E=50~\mathrm{keV};~R=10~\mathrm{fm})$

■ The ⁸Be excited states relevant for ${}^7{
m Be}(n,p){}^7{
m Li}$ do not have an α exit channel.

... but a measure at BBN energies would be extremely useful

Other relevant ⁷Be destruction channel?

Possible only if new unknown resonances (${}^{7}\text{Be} + a \rightarrow C^* \rightarrow b + Y$) are found:

Bretit-Wigner expression

$$\sigma = \frac{\pi \,\omega}{2\mu \,E} \frac{\Gamma_{\rm in} \Gamma_{\rm out}}{(E - E_r)^2 + \Gamma_{\rm tot}^2/4}$$

 E_r = resonance energy $\Gamma_{\rm in}$ = width of the entrance channel $\Gamma_{\rm out}$ = width of the exit channel $\Gamma_{\rm tot} = \Gamma_{\rm in} + \Gamma_{\rm out} + \dots$

$$\omega = \frac{2J_C*+1}{(2J_2+1)(2J_2+1)}$$

The resonance width Γ_{in} (and Γ_{out}) can be expressed as the product:

$$\Gamma_{\rm in} = 2P_l(E, R) \gamma_{\rm in}^2,$$

Penetration factor $P_l(E,R) \equiv kR \nu_l$

The reduced width γ_{in}^2 has to be smaller than :

$$\gamma_{\rm in}^2 \leq \gamma_{\rm W}^2 = \frac{3}{2\mu R^2}$$

$$\gamma_{\rm W}^{\ 2} = {\it Wigner limiting width}$$

Naively:

$$\gamma_{\rm in}^2 \sim f \sim \frac{v}{R}$$
 with $v \sim \frac{P}{\mu} \sim \frac{1}{R\mu}$

(⁷Be + d) entrance channel

Iso-countours for: $\delta Y_{
m Li} = 1 - rac{Y_{
m Li}}{\overline{Y}_{
m Li}}.$

Suggested as a solution of the ⁷Li problem by Coc et al. 2004 and Cyburt et al. 2012.

See also Angulo et al. 2005.

⁷Be + d entrance channel

Note that: it exists a "maximal achievable reduction of ⁷Li":

(⁷Be + d) entrance channel

Iso-countours for: $\delta Y_{
m Li} = 1 - rac{Y_{
m Li}}{\overline{Y}_{
m Li}}.$

Suggested as a solution of the ⁷Li problem by Coc et al. 2004 and Cyburt et al. 2012.

See also Angulo et al. 2005.

- Maximum achievable reduction $\sim 40\%$
- Obtained for: $E_{\rm r} \sim 150 {\rm ~keV}$ $\Gamma_{\rm tot}(E_r,R) \sim 45 \, {\rm keV}$

$$R = 10 \text{ fm}$$

Results consistent with Cyburt et al. 2012

(⁷Be + ⁴He) entrance channel

- Maximum achievable reduction $\sim 55\%$
- Obtained for: $E_r \sim 360 \text{ keV}$ $\Gamma_{\text{tot}}(E_r, R) \sim 21 \text{ keV}$ $\Gamma_{\text{out}} \sim 19 \text{ keV} \text{ and } \Gamma_{\text{in}}(E_r, R) \sim 1.5 \text{ keV}.$
- Strong Coulomb suppression compensated by the fact that the $\alpha/n \sim 10^6$

(⁷Be + ⁴He) entrance channel

- Maximum achievable reduction $\sim 55\%$
- Obtained for: $E_r \sim 360 \text{ keV}$ $\Gamma_{\text{tot}}(E_r, R) \sim 21 \text{ keV}$ $\Gamma_{\text{out}} \sim 19 \text{ keV}$ and $\Gamma_{\text{in}}(E_r, R) \sim 1.5 \text{ keV}$.
- Strong Coulomb suppression compensated by the fact that the $\alpha/n \sim 10^6$

However:

- For $E_r \leq 1.15$ MeV, no particle exit channels for the coumpound nucleus 11 C
- Only possible electromagnetic transitions: $\Gamma_{\rm out} \leq 100\,{\rm eV}$

(⁷Be + ⁴He) entrance channel

- Maximum achievable reduction $\sim 55\%$
- Obtained for: $E_r \sim 360 \text{ keV}$ $\Gamma_{\text{tot}}(E_r, R) \sim 21 \text{ keV}$ $\Gamma_{\text{out}} \sim 19 \text{ keV}$ and $\Gamma_{\text{in}}(E_r, R) \sim 1.5 \text{ keV}$.
- Strong Coulomb suppression compensated by the fact that the $\alpha/n \sim 10^6$

However:

- For $E_r \leq 1.15$ MeV, no particle exit channels for the coumpound nucleus 11 C
- Only possible electromagnetic transitions: $\Gamma_{out} \leq 100 \, eV$

Taking this into account:

- Maximum achievable reduction: $\sim 25\%$
- Obtained for: $E_r \sim 270 \text{ keV}$ $\Gamma_{\text{tot}}(E_r, R) \sim 160 \text{ eV}$ $\Gamma_{\text{out}} \sim 100 \text{ eV} \text{ and } \Gamma_{\text{in}}(E_r, R) \sim 60 \text{ eV}$

The experimental situation

7 Be + d

- It exists an excited state in ${}^{9}B$ at 16.71 MeV ($E_{r}=220~{\rm keV}$)
- Ruled out as a solution of the cosmic ⁷Li problem by **Kirsebom et al. 2011**
- A non negligible suppression requires the existence of a new (not yet discovered) excited state of ${}^9\mathrm{B}$ around $E_r \sim 150\,\mathrm{keV}$.
- O'Malley et al. 2011 analyzed this possibility. The data show no evidence and allow to set an upper limit on the total resonance width at the level of $\sim 1 \, \mathrm{keV}$.

7 Be $+^{4}$ He (and 7 Be $+^{3}$ He)

- Hammache et al. 2013 studied 10 C and 11 C via the reactions 10 B(3 He, t) 10 C and 11 B(3 He, t) 11 C.
- The results do not support ${}^{7}\text{Be} + {}^{3}\text{He}$ and ${}^{7}\text{Be} + {}^{4}\text{He}$ as possible solutions for the 7Li problem.

In conclusion

The cosmic lithium problem is still open:

the possibility of a nuclear physics solution is unlikely in light of the recent theoretical analysis and experimental efforts (note, however, that ${}^{7}\text{Be}(n,\alpha){}^{4}\text{He}$ still not measured at BBN energies).

Other possible solutions:

- ⁷Li destruction (depletion) in stars favored by diffusion, rotationally induced mixing, or pre-main-sequence depletion → generally requires ad hoc mechanism and fine tuning of stellar parameters
- New physics effects that decrease the promordial ⁷Li (⁷Be) production:
 - non standard neutron sources (produced by decay, annihilation, oscillations);
 - non extensive statistics;
 - time variation of the fundamental constants;
 -

Note that: these scenarios are generally constrained by interplay between D and ⁷Li (D overproduction)

Additional slides

Useful relations about nuclear reactions:

The partial reaction cross section of a generic process ⁷Be + a cannot be larger than:

$$\sigma_{\text{max}} = (2l+1) \frac{\pi}{k^2} = (2l+1) \frac{\pi}{2\mu E}$$

$$l = \text{angular momentum}$$

$$\mu = \text{reduced mass}$$

$$E = \text{energy (CoM)}$$

Low-energy reactions are suppressed due tunnelling through the Coulomb and/or centrifugal barrier. Modelling the interaction potential by a square well with a radius R:

Transmission coeff. (low energy)

$$\sigma_{\rm C} = \sigma_{\rm max} T_l$$

$$T_l = \frac{4k}{K} v_l$$

$$\begin{cases} k &= \text{ relative momentum (outside)} \\ K &= \text{ relative momentum (inside)} \\ v_l &= \text{ penetration factor} \end{cases}$$

For neutrons:

$$v_0 = 1$$

$$v_1 = \frac{x^2}{1+x^2}$$

$$x \equiv k \, R = \sqrt{2\mu \, E} \, R$$

For charged nuclei:

$$v_l = \frac{k_l(R)}{k} \exp\left[-2\int_R^{r_0} k_l(r) dr\right],$$

$$\begin{cases} r_0 &= \text{class. distance closest approach} \\ k_l(r) &= \sqrt{2\mu U_l(r) - k^2} \\ U_l(r) &= \frac{Z_a Z_X e^2}{r} + \frac{l(l+1)}{2\mu r^2} \end{cases}$$

Other relevant ⁷Be destruction channel?

Possible only if new unknown resonances are found. We rewrite Breit-Wigner:

$$\sigma_a = \frac{\pi \,\omega \,P_l(E,R)}{2\mu \,E} \frac{2\,\xi}{\left[(E-E_r)/\gamma_{\rm in}^2\right]^2 + \left[2P_l(E,R) + \xi\right]^2/4} \qquad \qquad \xi \equiv \frac{\Gamma_{\rm out}}{\gamma_{\rm in}^2}$$

In order to maximise the cross section, we assume:

- \bullet $\gamma_{\rm in}^2 = \gamma_{\rm W}^2(R)$
- $\Gamma_{\text{tot}} = \Gamma_{\text{in}} + \Gamma_{\text{out}}$
- s-wave entrance channel (l=0)
- $J_{C^*} = J_a + J_{\text{Be}}$, i.e. ω has the maximum value allowed by angular momentum conservation

With these assumptions:

$$\sigma_{a} = \frac{\pi \omega P_{0}(E, R)}{2\mu E} \frac{2\xi}{\left[(E - E_{r}) / \gamma_{W}^{2}(R) \right]^{2} + \left[2 P_{0}(E, R) + \xi \right]^{2} / 4}.$$

$$\begin{cases} E_{r} \\ \xi \equiv \frac{\Gamma_{\text{out}}}{\gamma_{\text{in}}^{2}} \end{cases}$$

Free param.:

$$\begin{bmatrix} E_r \\ \xi \equiv \frac{\Gamma_{\text{out}}}{\gamma_{\text{in}}^2} \end{bmatrix}$$

$(^{7}Be + t)$ and $(^{7}Be + ^{3}He)$ entrance channels

Proposed by Chakraborty, Fields and Olive 2011 as a solution:

Results of Chakraborty et al. 2011 are artifacts from using the narrow resonance approximation outside its regime of application

Dependence on the entrance channel radius

- The maximum achievable reduction $(\delta Y_{\text{Li}})_{\text{max}}$ is an increasing function of the assumed entrance channel radius R.
- Large values for R are needed to solve the cosmic ⁷Li problem (much larger than the sum of the radii of the involved nuclei).