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The Physics of BBN

The abundances of “He, D, *He, ’Li produced by BBN depends on the following

quantities: _
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* Essentially all neutrons surviving till the onset of BBN used to build “He

* D, 3He, ’Li are determined by a complex nuclear reaction network.



Accuracy of theoretical
calculations

Accuracy of “He calculation at the level of
0.1% (but beware of neutron lifetime ...).

High precision codes (Lopez & Turner 1999,
Esposito et al. 1999) take directly into account

effects due to :

e zero and finite temperature radiative

processes,

* non equilibrium neutrino heating during e*

annihilation;
¢ finite nucleon masses;

These effects are included “a posteriori” in
the “standard” code (Wagoner 1973, Kawano

1992).
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Theoretical uncertainties

Reaction rate uncertainties translate into

?
uncertainties in theoretical predictions: Be
12
Monte-Carlo evaluation of uncertainties . o
Krauss & Romanelli 90, Li
Smith et al 93, 11
Kernan & Krauss 94 g i B
He He 7
Semi-analytical evaluation of the error matrix alla N8 g
Fiorentini, Lisi, Sarkar, Villante, 98 2
Lisi, Sarkar, Villante, 00 p™dfst leading reactions
1 (Smith et al 93)
1. n<->p 7. tlay) 'L
Re-analysis of nuclear data n : i:::;“n N :;::;‘H
Nollet & Burles 00, Cyburt et al 01, + a(an)He 10. *He(ay)Be
Descouvement et al. 04, Cyburt et al. 04, S Wamk 11. "li(p.e)Ha
6. t(dn)‘He 12. "Be(n,p)"li

Serpico et al. 04, Coc et al. 11, Coc et al. 14

NACRE Coll. Database Sub-leading reactions
(see Serpico et al. 04)

Recent new data and evaluations

p(n,y)D: Ando et al. 06

2H(p,y)3He: LUNA

3He(a,y)’Be: LUNA, Cyburt et al 08
2H(d,p)3H and 2H(d,n)3He: Leonard et al. 06
2H(0,y)6Li: LUNA

‘He(d, v)5Li
8 Li{p,a Ve
"Be(n,a)*He

"He(d,p)2 *He



BBN without computers:
(Esmailzaldeh et al 1991)

The abundance of a generic element evolves according to the rate equations:

dY;
dt

Z%Yk <Ujk U>T —Y; ZYz <0il U>T . :> Y;(T) —
l

J:k

S
5

A good approx. is obtained by studying the quasi-fixed point of the above equation:

O G = np Y Y Yi{ouwv)r
Yin o _ ik
i | T=T;
! D; = np ZYZ (oi V)T
l

T., £= Freeze-out temperature =
D, C; < H

The abundance Y; of each element is approximately determined by a selected
number of creation and destruction processes at a characteristic freeze-out
temperature T, . (=<10-100 keV).




The role of nuclear reactions

Leading reactions

Logarithmic derivatives of the Forn =5 1019, we obtain:
primordial abundances Y, wrt the

rates of the nuclear cross sections S, Reaction e d i 3He
n lifetime 0.72 041 039 0.14
olnY; p(n,~)d 0.00 -0.19 1.37 0.09
i = Fin s, d(p.7)*He | 0.00 -0.34 0.61 0.40
d(d,n)3He 0.01 -0.53 0.69 0.19
(d,p)t 0.01 -0.46 0.06 -0.26
3He(n, p)t 0.00 0.02 -028 -0.17

t(d,n)*He 0.00 0.00 -0.01 -0.01
SHe(d,p)*He | 0.00 -0.02 -0.74 -0.74
SHe(ar,7)"Be | 0.00 0.00 0.98  0.00
t(a,v)"Li 0.00 0.00 0.02 0.00
"Be(n,p)i | 0.00 0.00 -0.71 0.00
Li(p,a)*He | 0.00 0.00 -0.04 0.00

Based on Fiorentini, Lisi, Sarkar and Villante, 1998

Note that: Sub-leading reactions give small log-derivatives but may be affected by large
uncertainties and still contributes to the error budget.



Theoretical error budget

(Over)simplifying from Coc et al. JCAP 2014:
The contribution of different reaction rates
to theoretical error budget can be expressed
as:

9.k

1 InY;
Cjpr~— [y. & 5Sk] ~ (£)

J
0 j tot 8 In Sk 0. tot

[des04] — Descouvemont et al., At. Data and Nucl. Data Tables, 2004

[cyb08] — Cyburt and Davids, Phys Rev C, 2008
[leo06] — Leonard et al., Phys Rev C 2006

Rate uncert. 85,

Reaction CHed i

1/m -0.9677

6Y4z 0.1% 3He(t,np{)‘iHe 0.1151
D(d,n)*He  0.1282

D(d,p)*H 0.1296

= 0.13% [pdg]

= 2-3% [leo06]
= 2-3% [leo06]

Table 5. Correlations with 4He.

Reaction Chk
D(p,y)*He -0.7790
0Y,=3% | D(dn)*He -0.4656
D(d,p)’H  -0.4082

= 5% [des04]
= 2-3% [leo06]
= 2-3% [leo06]

Table 6. Correlations with D.

Reaction CHe3 i

D(p,y)*He  0.6699

6y3z 3% D(d,n)3rHe 0.1640
D(d,p)*H  -0.1897

SHe(d,p)*He -0.6841

Table 7. Correlations with 3He.

Reaction CLiz k

"Be(n,a)*He -0.3057
"Be(d,p)2*He -0.2079

- QO D(p,y)*He 0.4043
6Y7~ 8% D(d,n)*He  0.1547
SHe(d,p)*He -0.2232

3He(a,y)"Be  0.7107

factor ten [??7]

= 5% [des04]
= 2-3% [leo06]

~ 8% [Cyb08]

Table 8. Correlations with “Li.



Theory. vs. observations

Helium 4: determined by extrapolating to
Z=0 the (Y,Z) relation or by averaging Y in
extremely metal poor Hll regions (N and O
used as metallicity tracers)

Y, = 0.2465 + 0.0097
Aver et al, JCAP 2013
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Theory. vs. observations

Helium 4: determined by extrapolating to baryon density Qh?
Z=0 the (Y,Z) relation or by averaging Y in 107#

extremely metal poor Hll regions (N and O
used as metallicity tracers)

Yp = 0.2465 £+ 0.0097
Aver et al, JCAP 2013

Deuterium: observed in the high resolution
spectra of QSO absorption systems at high
redshift:

SR SISIRESARE555e58

D/H|, = (2.53 £ 0.04) x 107°
Cooke et al, ApJ 2014
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Deuterium

The primordial abundance is
obtained from the weighted mean
of 5 damped Lyman-a systems:

log(D/H)

D/H|, = (2.53 £ 0.04) x 107°

To be compared with the
predicted value for n=r¢y;s:

D/H|, = (2.65 £ 0.08) x 10~°
Coc et al, JCAP 2014

The two values above are consistent at 1o

* N, =3.28+0.28
* A, =rescaling factor of ?H(p,y)*He 2 1
(10)

Cooke et al, ApJ 2014
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Theory. vs. observations

Helium 4: determined by extrapolating to baryon dzensity Oh?
Z=0 the (Y,Z) relation or by averaging Y in 027 10
extremely metal poor Hll regions (N and O
used as metallicity tracers) 0.26
>~0.25
Y, = 0.2465 £ 0.0097 X
Aver et al, JCAP 2013 0.24
Deuterium: observed in the high resolution 0.23
spectra of QSO absorption systems at high 7 1073 S
: N~ ~
redshift: A

D/H|, = (2.53 £ 0.04) x 107° —
Cooke et al, ApJ 2014 }
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Lithium-7: observed in metal poor (Pop Il)

stars of our galaxy. Abundance does not vary
significantly in stars with metallicities < 1/30 10-°
of solar (Spite Plateau)
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Li/H|, = (1.6 £0.3) x 10~
Sbordone et al, A&A 2010 10-10
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Lithium-7

Meltdown of the spite
plateau at low metallicity

(<1/1000 Solar)

(?) Something is depleting
Lithium in very metal poor

stars

The primordial value is
obtained from stars with

-2.8 < [Fe/H] <-1.5

Li/H|, = (1.6 £0.3) x 10~

Sbordone et al, A&A 2010
—————————

26[

A(Li)

20

1.6

[Fe/H]

[Fe/H] = log,o[(Fe/H)/(Fe/H)o)]



Theory. vs. observations

Helium 4: determined by extrapolating to baryon dzensity Oh?
Z=0 the (Y,Z) relation or by averaging Y in 0.27 10 -
extremely metal poor Hll regions (N and O §
used as metallicity tracers) 0.26 §
A
>~0.25 X
Y, = 0.2465 £ 0.0097 N
Aver et al, JCAP 2013 0.24 N\
X
Deuterium: observed in the high resolution 0.23 §
spectra of QSO absorption systems at high 1073 N
. ™~ N
redshift: A N
N
_5 10-4 \
D/H|, = (2.53 £ 0.04) x 10 T N
Cooke et al, Ap) 2014 . ..
T 105 L -
Lithium-7: observed in metal poor (Pop Il) i N
stars of our galaxy. Abundance does not vary - §\
. e . . . ey - AN
significantly in stars with metallicities < 1/30 102 F §\
of solar (Spite Plateau) — >
N
5 N
. —10 = \\:\§
Li/H|, = (1.6 £0.3) x 10 §§
Sbordone et al, A&A 2010 10-10 §§
NN
The Lithium-7 problem: 10° Newvs 10t
Observational values are factor 3 lower than baryon—to—photon ratio 7,

required to obtain concordance




Primordial nucleosynthesis of CNO (and other) elements
(from Coc et al., JCAP 2014; see also locco et al. JCAP 2007)

Primordial abundance of eLi:

°Li/H = (0.9 — 1.8) x 10~

Error budget dominated by D(a.,y)bLi
reaction recently measured by LUNA

The claim of °Li/H plateau at 10! has
not been confirmed

Primordial abundance of CNO is at the
level of:

CNO/H = (5—30) x 107*°

N(X)/N(H)
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7L| Synth eS|S Serpico et al., 2004

"'g ;— O Be7(n,p)Li7 o Be7(n,a)He4
5 —4F
. . . > 10 He4(He3,y)Be7 Be7(d,pa)He4
At =6 x 1019, “Liis mainly produced s 1
) . . E 10—6? A Li6(d,n)Be7
from ’Be (e+/Be—> ’Li + v, at “late” times): S
510 X
NS 3 7Be
o 1"10—10;
Be
Yii ~ Yge ~ e
DBe T:TBe,f §
—14F
T ¢ = 50 keV 10}
10—162:
10—187
The dominant ’Be production mechanism is o

through the reaction 3He(a.,y)’Be

—> Studied in detail both experimentally ~100
(LUNA) and theoretically. The cross section £
is known to 7% uncertainty. E 8 8

The dominant ’Be destruction channel is

through the process ’Be(n,p)’Li

- Experimental data obtained from direct
data and reverse reaction. R matrix fit to
expt. data provide the reaction rate

with 1% accuracy. e
T E (Mev)




A nuclear physics solution to the “Li problem?

A formalism to describe the response of ’Li to a generic (temperature dependent)
modification of the nuclear reaction rates.

Motivated by:

1.5 K,(T)/100
C e K(T) = K,(T)
Vi~ Yie ~ —2
Dge T=Tge,r
_ 1.0
We write: .
)
dT <
5X1; = / S K(T) 6D5u(T) s
K,(T)/10°
where:
0.0 =
1.0 1.2 14 1.6 1.8 2.0
1 Log,,(T/1KeV)
X1 = % ———» inverse ’Li abundance
Li
X1i
SXp = =
XrLi
Dy (T
§Dpo(T) = Doell) _

22



A nuclear physics solution to the “Li problem?

A formalism to describe the response of ’Li to a generic (temperature dependent)
modification of the nuclear reaction rates.

Motivated by: s
. K,(T)/100
Che K(T) = K,(T)
Yii ~ YBe ~ o)
Be [ T=Tg, ¢
_ 1.0
We write: .
- Kues(T)/30
dT g He3 ~
5X1; — / S K(T) 6D5u(T) s
Ko(T)/10°
where:
0.0 -
1.0 12 1.4 1.6 1.3 20 22
1 Log,((T/1KeV)
X = v, > inverse ’Li abundance
s
' T ~ 10 — 60 keV
5XLi — fLi —1 Based on Broggini, Canton, Fiorentini, FLV, 2012
Li
Dy (T



The “Li synthesis — the role of different channels

1.5
§Dpe(T) = Dee(T)
Dge(T)

Considering that: 10
- = e
DBG(T) = nB YD(T) <EnpU>T v
Dg.(T) = np ZYG(T) (TaV)T 05

Onp = cross section of Be+n— Li+p
Dominant ’Be destruction channel (97% of the total) 0.0

o, = cross section of "Be + a — anything

K,4(T)/100

K(T) = Ku(T)

1.0 1.2 14 1.6 1.8 20 22
Log,,(T/1KeV)

Indicates a generic additional “Be destructing
process !
One obtain: 0001
dT <Oa”U>T —
0 Xy = — K, (T) =% 3
’ Z/ 7 5 G =
where: 10-9
Y (T
Ko(T) = K(1) 2D
Yn(T) 10712

10 20 50 100 2b0 500



The requirements to solve the ’Li problem

(0av)T

— at T ~ 10 — 60 keV
<0npU>T

R, =

To obtain a reduction of the ’Li abundance by a factor 2 or more:

e R, > 1.5 for additional reactions in the “Be + n channel

=

e R,; > 0.01 for reactions in the "Be 4+ d channel

e R; > 1.5 for reactions in the “Be + ¢ channel
. Suppressed by

o Ries > 0.03 for reactions in the “Be + 3He channel Coulomb barrier

e Ryos > 4 x 1078 for reactions in the “Be + “He channel

=_—

Note that:
The cross section of ’Be(n,p)’Li reaction is extremely large

onp(H0keV) ~ 9 barn Comparable with unitarity bound



The (“Be+n) channel
"Be(n,p) Li

v Dominant contribution to 7Be destruction (97%). Very well studied;

v Data obtained either from direct measurements or from reverse reaction;
v R-matrix fits to expt. data determine the reaction rate with = 1% accuracy;
v’ Extremely large cross section (close to unitarity bound).

"Be(n, a)*He

v No experimental data exist in the BBN energy range;

v" Upper limit o, , < 1Imb at thermal energies from Bassi et al 1963;

v 0Old estimate from Fowler (1967) used in BBN codes (with factor 10 uncertainty);
v Second most important contribution to ’Be destruction (2.5 %);

v" (One of the) largest contribution to “Li error budget;



The (“Be+n) channel
"Be(n,p) Li

v Dominant contribution to 7Be destruction (97%). Very well studied;

v Data obtained either from direct measurements or from reverse reaction;
v R-matrix fits to expt. data determine the reaction rate with = 1% accuracy;
v’ Extremely large cross section (close to unitarity bound).

"Be(n, a)*He

v No experimental data exist in the BBN energy range;

v" Upper limit o, , < 1Imb at thermal energies from Bassi et al 1963;

v 0Old estimate from Fowler (1967) used in BBN codes (with factor 10 uncertainty);
v Second most important contribution to ’Be destruction (2.5 %);

v" (One of the) largest contribution to ’Li error budget;

It is unlikely that 7Be(n, a)4He can become comparable to 7Be(n,p)7Li

Due to parity conservation of strong interactions:
Ona/Onp ~ 11 /Ty ~ 2uFE R?*<0.2
(EF'=50keV; R =10 fm)

= "Be(n, a)*He requires p-wave (I=1) collision;

= The 8Be excited states relevant for 7Be(n, p)7Li do not have an a exit channel.

... but a measure at BBN energies would be extremely useful




Other relevant ’Be destruction channel?

Possible only if new unknown resonances (’Be +a =2 C* = b +Y) are found:

Bretit-Wigner expression
FE,. = resonance energy

o — TW I'inLout I';,, = width of the entrance channel
2uE (E— E,)?24+T3,/4 [out = width of the exit channel
Fiot = L'in + Tout + - -
W — 2T +1
(2J.+1)(2J7+1)

The resonance width I',, (and I, ;) can be expressed as the product:

Penetration factor
[y, = 2P(E,R) 72, P(E,R) = kRy
The reduced width vy, ? has to be smaller than :
Naively:
Vi <MW = ’ P 1
" 211 R? 2 L fo Y with v~ =~ —
K Yin ~ f o~ with v ™ T

Y’ = Wigner limiting width



7
( Be + d) entrance channel Suggested as a solution of the ’Li problem

by Coc et al. 2004 and Cyburt et al. 2012.

Yo
Iso-countours for: 0¥, =1 — _ o

Y

See also Angulo et al. 2005.

0.0}
025

Tin = 2 Po(E,R) 3

0.00 0.05 0.10 0.15 0.20 025 0.30



’Be + d entrance channel

Note that: it exists a “maximal achievable reduction of “Li”:

Broggini et al., JCAP 2012

0.0
0.25
“Broad” resonance
—0.5} —1/2 ;—3/2
B <O-aU>T ~ (Feff/rtot) MU / T /
—10} By
— AN
R \
<
.3 14l \
\
“Narrow” resonance \
(040)7 ~ Teir (WT)~*/* exp(~E,/T) | r o~ DinLou
|
| FtOt
R=10 fm ll
—231 yi = 0.4 MeV 0.1 |
Tin = 2 Po(E,R) 3 :
~3.0p | | | | ' | |
0.00 0.05 0.10 0.15 0.20 025 030

E,



(7Be + d) entrance channel Suggested as a solution of the ’Li problem
by Coc et al. 2004 and Cyburt et al. 2012.

N
Iso-countours for:  0Yr; =1 — - See also Angulo et al. 2005.
YL
Broggini et al., JCAP 2012 e Maximum achievable reduction ~ 40%
0.0} ' ' ' '
0.5 e Obtained for:

E. ~ 150 keV
Ptot (Er, R) ~ 45 keV
Cout ~ 35keV and Ty, (F-, R) ~ 10keV

-0.5;

e Remember:

B R =10fm
<
(2-15 . .
=3 Results consistent with Cyburt et al. 2012
50
i
-2.0¢
|
R=10 fm ‘I
—231 yi = 0.4 MeV : |
Tin =2 Po(ER) Ay :
-3.0p . . . . ' . .
0.00 0.05 0.10 0.15 0.20 025 0.30



(“Be + *He) entrance channel

-5 R=10 fm
yi =025 MeV
Tin =2 Po(ER) v

0.0 02 0.4 0.6 0.8 1.0 12

e Maximum achievable reduction ~ 55%

e Obtained for:
FE, ~ 360 keV
Ftot (ET, R) ~ 21 keV
Lout ~ 19keV and Ty, (E-, R) ~ 1.5keV.

e Strong Coulomb suppression compensated
by the fact that the a/n ~ 10°



(“Be + *He) entrance channel

Broggini et al., JCAP 2012

-5 R=10 fm
yi =025 MeV
Tin =2 Po(ER) v

0.0 02 0.4 0.6 0.8 1.0 12

Maximum achievable reduction ~ 55%

Obtained for:

FE, ~ 360 keV

Ftot (ET, R) ~ 21 keV

Lout ~ 19keV and Ty, (E-, R) ~ 1.5keV.

Strong Coulomb suppression compensated
by the fact that the a/n ~ 10°

However:

For E,. < 1.15 MeV, no particle exit channels
for the coumpound nucleus ''C

Only possible electromagnetic transitions:
[out <100eV



(“Be + *He) entrance channel

Broggini et al., JCAP 2012

"Be + “He

1 To=50 keV
|
|
|
|
1
|
|
1
|
|
|
|
1
|
|
-5 R=10 fm |
yi =025 MeV :
[in = 2 Po(ER) 7 I
1
-6 .

0.0 0.2 0.4 0.6 0.8 10 12

Maximum achievable reduction ~ 55%

Obtained for:

FE, ~ 360 keV

Ftot (ET, R) ~ 21 keV

Lout ~ 19keV and Ty, (E-, R) ~ 1.5keV.

Strong Coulomb suppression compensated
by the fact that the a/n ~ 10°

However:

For E,. < 1.15 MeV, no particle exit channels
for the coumpound nucleus ''C

Only possible electromagnetic transitions:
[out <100eV

Taking this into account:

Maximum achievable reduction: ~ 25%

Obtained for:

E, ~ 270 keV

Ciot(Er, R) ~ 160eV

Cous ~ 100eV and I', (E,, R) ~ 60eV



The experimental situation

‘Be +d
o It exists an excited state in B at 16.71 MeV (E, = 220 keV)

e Ruled out as a solution of the cosmic “Li problem by Kirsebom et al.
2011

e A non negligible suppression requires the existence of a new (not yet dis-
covered) excited state of YB around E, ~ 150 keV.

e O’Malley et al. 2011 analyzed this possibility. The data show no
evidence and allow to set an upper limit on the total resonance width at
the level of ~ 1keV.

’Be +*He (and ’Be + 3He)
e Hammache et al. 2013 studied 1°C and '1C via the reactions 1°B(*He, ¢)1°C
and 'B(3He, t)!'C.

e The results do not support 'Be 43 He and "Be +* He as possible solutions
for the 7Li problem.



In conclusion

The cosmic lithium problem is still open:

- the possibility of a nuclear physics solution is unlikely in light of the recent
theoretical analysis and experimental efforts (note, however, that ’Be(n,a.)*He still
not measured at BBN energies).

Other possible solutions:

- ’Li destruction (depletion) in stars favored by diffusion, rotationally induced mixing,
or pre-main-sequence depletion = generally requires ad hoc mechanism and fine

tuning of stellar parameters

- New physics effects that decrease the promordial Li (“Be) production:

non standard neutron sources (produced by decay, annihilation, oscillations);
* non extensive statistics;
* time variation of the fundamental constants;

Note that: these scenarios are generally constrained by interplay between D and ’Li
(D overproduction)



Additional slides



Useful relations about nuclear reactions:

The partial reaction cross section of a generic process ’Be + a cannot be larger than:

- - [ = angular momentum
Omax = (20 +1) 2 (20 +1) 2,LL—E < p = reduced mass
E = energy (CoM)

Low-energy reactions are suppressed due tunnelling through the Coulomb and/or
centrifugal barrier. Modelling the interaction potential by a square well with a radius R:

Transmission coeff. (low energy)

Ak k = relative momentum (outside)
0C = Omax 1i 1= N <4 K = relative momentum (inside)
v; = penetration factor
For neutrons:
Vo = 1
22 r=kR=+2uE R
V1 =
1+ 2?2
For charged nuclei: - 1ro = class. distance closest approach
(R) . J Rl = V2uUi(r) - K
l 2
_ _ AVA I(l+1
U] ? exp[ 2/R kz(r)dr] , Ul(r) = x¢€ 1 ((+1)

- r 2ur?



Other relevant ’Be destruction channel?

Possible only if new unknown resonances are found. We rewrite Breit-Wigner :

- :WW})Z(EaR) 25 é.:Fout
" 20E  [(E—E,)/72]” + 2P(E,R) + ¢ /4 i

In order to maximise the cross section, we assume:
2 _ .2
® Yin — ’YW (R)
L Ftot — Fin + Fout
e s-wave entrance channel (I = 0)

o Jox = J, + JBe, i.6. w has the maximum value allowed by angular mo-
mentum conservation

With these assumptions: Free param.:
Tw Py(F, R) 26 Exr
Ta = 2 ) ~ I'ou
20E (B —E) /v (R) +[2Po(E,R) +¢]" /4 £= Vgt




(/Be +t) and (’Be + 3He) entrance channels

Proposed by Chakraborty, Fields and Olive 2011 as a solution:

0.0
"Be +t
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F=50 keV
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Results of Chakraborty et al. 2011 are artifacts from using the narrow resonance
approximation outside its regime of application



Dependence on the entrance channel radius
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e The maximum achievable reduction (§Y1;)max iS an increasing function
of the assumed entrance channel radius R.

e Large values for R are needed to solve the cosmic “Li problem
(much larger than the sum of the radii of the involved nuclei).




